Читаем Фейнмановские лекции по гравитации полностью

Мы видим, что действие, которое мы записываем, не является единственным. Первое слагаемое, которое мы записали, должно здесь присутствовать, так как только оно и приводит к правильному результату для плоского пространства. И нет экспериментального свидетельства о приливных силах и т.д. и т.п., что могло бы быть причиной для включения или невключения других слагаемых, таких как в выражении (10.3.3). Единственная разумная вещь, которую мог бы сделать физик теперь, состоит в том, чтобы выбрать некоторые слагаемые, которые являются ”проще”, чем другие слагаемые, пренебречь более сложными членами в действии и посмотреть, какого рода теорию он получил в результате. В некотором смысле возможно производные есть более сложные объекты, чем просто поля, поэтому член с множителем является более сложным, поскольку он содержит четыре производных, две в полях и две в тензоре R. Слагаемое с множителем содержит только две производных, тем не менее обе производных по полю g. Однако трудно определить усложнение теории, которое было бы сделано недвусмысленным образом; всегда возможно провести интегрирование по частям, так что производные исчезают в одном месте и вновь появляются в другом - простота, которая очевидна в случае, если начать формулировать теорию с одной исходной точки, может не соответствовать простоте, которая получилась бы, если теорию формулировали бы, исходя из другой начальной точки. Если нами используется построение квантовой механики, исходя из уравнения Шрёдингера, то простейшее действие, по-видимому, должно быть таким, которое соответствует =0. Но так как мы начали формулировать квантовую механику, задаваемую через интегралы по траекториям, то простейшее действие кажется должно быть таким, которое соответствует =1/6. Каждая из возможностей выбора значения а кажется наипростейшей с соответствующей точки зрения. Я не знаю никакого удовлетворительного способа определить величину и считаю, что определение действия для скалярного поля является неоднозначным.1

1 Современное рассмотрение этой проблемы, включающее в себя обсуждение проблемы спектра атома водорода см. в [Klei 89].

Значение члена, такого как член со множителем в соотношении (10.3.3), состоит в том, что он характеризует то, должны ли мы иметь дело с частицей, которая может чувствовать гравитационное поле вне области, достаточно большой по сравнению с той, которая характеризуется локальной кривизной. Если частица имеет структуру, которая в некотором смысле инфинитезимально мала, тогда она не может чувствовать кривизну. Но если, что скорее всего, частица, двигаясь, совершает движение типа штопора в окрестности своего положения, то член, включающий в себя локальную кривизну, может быть очень хорошо представлен.

Мы приведём пример, рассматривая ситуацию в электродинамике, как иное исходное положение приводит к иному ответу достаточно безобидным путём. Здесь принцип минимального электромагнитного взаимодействия приводит к замене


x

->


x

-

ie

A


(10.3.4)


в лагранжиане. Предположим теперь, что перед тем, как мы сделали такую замену, мы записали интеграл от лагранжиана следующим образом:


S

=

dV

x

-

dV

m

+


+

dV

(

-

)

x


x

.


(10.3.5)


Последнее слагаемое не записывается при обычном изложении теории, поскольку оно тождественно равно нулю, причём потому, что оно в точности равно нулю, не может быть никакого твёрдого и надёжного правила относительно того, как отбросить этот член. Тем не менее, когда мы делаем замену градиента в соответствии с соотношением (10.3.4) для того, чтобы включить электромагнетизм, результирующий лагранжиан оказывается не тем же, каким он был до преобразования; лагранжиан имеет дополнительное слагаемое,


F

.


(10.3.6)


где F=A,-A, Этот член есть член аномального момента, открытого Паули. (Впервые это было сообщено мне Вентцелем.)

Электродинамика частиц спина 1 усложняется также аномальными квадрупольными моментами. Очевидно, не существует более простого выражения для лагранжиана, который можно записать, так что в теоретических работах должны представляться вычисления с альтернативными теориями, которые соответствуют различным аномальным моментам.

В нашей теории гравитации ситуация аналогична. Это как если бы частица обладала аномальным моментом инерции, добавляемым к обычному моменту инерции, обусловленному распределением массы.

В электромагнетизме подобные неоднозначности не появляются при описании частиц с нулевым спином - они впервые появляются при описании частиц со спином 1/2. С другой стороны, в гравитации трудности возникают даже при обсуждении простейшего случая скалярных частиц. Не существует решения для преодоления таких трудностей - мы должны признать, что множество альтернативных теорий (различных значений ) оказывается возможным.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука