Другое замечательное совпадение, связывающее гравитационную константу с размером вселенной, получается из рассмотрения полной энергии. Полная гравитационная энергия всех частиц вселенной есть что-то вроде 𝐺𝑀𝑀/𝑅 где 𝑅=𝑇𝑐 и 𝑇 - хаббловское время. На самом деле, если вселенная является сферой с постоянной плотностью, необходимо учесть множитель 3/5, но мы будем пренебрегать им, поскольку наша космологическая модель не во всем хорошо известна. Мы сравним эту величину с общей массой вселенной, 𝑀𝑐². И вдруг, о чудо! Мы получаем замечательный результат, 𝐺𝑀²/𝑅=𝑀𝑐², так что полная масса вселенной равна нулю.
1 На самом деле, мы не знаем ни плотности вещества, ни радиуса во вселенной с достаточной точностью для того, чтобы говорить о равенстве, но тот факт, что эти два больших числа должны были бы иметь одинаковые порядки величин, представляет собой поистине замечательное совпадение. Отсюда можно придти к весьма смелой мысли, что это ”ничто” рождает новые частицы, так как мы можем создать их в центре вселенной, где имеется отрицательная гравитационная энергия, равная 𝑀𝑐².1
Другое решение этого уравнения 𝑀=𝑐³𝑇/𝐺 (В этих оценках именно плотность вселенной является наиболее трудным для определения параметром. Мы можем видеть звёзды и галактики, видеть их достаточно много, но не иметь ясной идеи о том, насколько много тёмных звёзд находится там, звёзд, в которых перестали идти реакции ядерного горения. Не знаем мы и плотность межзвёздного газа. У нас имеются некоторые мысли о том, как оценить плотность натрия в пространстве между галактиками, основываясь на измерении поглощения излучения в линиях 𝐷, испускаемого удалёнными звёздами. Однако натрий возможно составляет лишь небольшую часть общей массы, и нам необходимо знать плотность водорода. Путём изучения движения спиральных рукавов галактик, шаровых скоплений, выясняется, что галактики имеют в своих центрах большое количество скрытой массы. Всё это не позволяет получить надёжную оценку средней плотности во вселенной. А.Эддингтон для своих оценок в 20-х годах использовал значение 1 атом водорода в см³ для галактик. Радиоастрономы, которые недавно изучили Галактику в ”свете водорода”, привели несколько меньшую оценку, скажем 0.7 атома водорода в см³. Нет никаких достоверных данных о плотности межгалактического вещества; космологи предполагают величины в 10⁵ меньшие, чем галактическая плотность, 10 атомов водорода в кубическом метре. Пользуясь этой оценкой, мы получаем чрезвычайно интересный результат, что полная энергия вселенной равна нулю. Почему так должно быть, является одной из величайших тайн - и, следовательно, одним из важнейших вопросов физики. После всего этого можно задать вопрос, что мы должны были бы изучать в физике, если подобные тайны не являются столь важными, чтобы их исследовать.
Все приведённые выше размышления о возможных связях между размером вселенной, количеством частиц и гравитацией не оригинальны и обсуждались ранее. Учёные, обсуждавшие подобные предположения, делятся на два типа: или это очень серьёзные математики, играющие в игры, заключающиеся в построении математических моделей, или скорее всего шутники, забавляющиеся тем, что обращают внимание на некие забавные численные курьёзы со смутной надеждой на то, что всё это возможно когда-нибудь и будет иметь какой-то смысл.
1.3. Квантовые эффекты в гравитации
В следующих нескольких лекциях мы начнём строить квантовую теорию гравитации. Было бы весьма полезно для нас держать в уме, что могли бы представлять из себя любые наблюдательные эффекты в такой теории. Вначале давайте рассмотрим гравитацию как теорию возмущений на атоме водорода. Ясно, что дополнительное притяжение между электроном и протоном приводит к малому изменению в энергии связи водорода; мы можем вычислить это изменение энергии из теории возмущений и получить значение ε. Известна зависящая от времени волновая функция атома водорода ψ=exp(-𝑖𝐸𝑡) где 𝐸 - такая величина, которая соответствует частоте порядка 10¹⁶ Гц. Теперь для того, чтобы наблюдать какие-либо эффекты, обусловленные влиянием ε, мы должны были бы ждать какое-то время до тех пор, пока истинная волновая функция могла бы быть отличима от невозмущённой волновой функции, например на 2π в фазе. Однако величина ε настолько мала, что для этого необходимо ждать время в 100 раз большее, чем возраст вселенной 𝑇. Таким образом, гравитационные эффекты в атомах ненаблюдаемы.
Рассмотрим другую возможность, когда атом удерживается только гравитационными силами. Например, мы хотели бы иметь два нейтрона в связанном состоянии. Когда мы вычисляем радиус Бора такого атома, то получаем, что он должен быть равным 10⁸ световых лет, и энергия связи должна быть равна 10⁻⁷⁰P.
1 Таким образом, надежда обнаружить влияние гравитационных эффектов на системах, которые являются достаточно простыми для того, чтобы можно было провести вычисления в квантовой механике, слишком мала.