Читаем Фейнмановские лекции по гравитации полностью

Несмотря на эти аргументы, мы хотели бы быть свободными от предубеждений. Ведь всё ещё остаётся возможность, что квантовая теория абсолютно не гарантирует, что гравитация должна быть квантуема. Я хочу, чтобы здесь я был правильно понят, отсутствие предубеждений не значит отсутствие всяких убеждений. Я имею ввиду, что возможно, если мы рассматриваем альтернативные теории, которые не кажутся нам a priori оправданными, и мы вычисляем, что бы имели, если бы такая теория была верна, возможно было бы неожиданным открытием, что такой путь в действительности существует! Мы никогда не сделаем это открытие с позиции, что ”конечно, всегда необходимо наслаждаться возможностью сомнений”, а действовать и вычислять только с одним предубеждением. Рассуждая в этом духе, я хотел бы предположить, что квантовая механика не выполнима при больших расстояниях и для больших объектов. Теперь следите за моими утверждениями, я не говорю, что квантовая механика будет не выполняться на больших расстояниях, я только сказал, что это не является несогласованным с тем, что мы знаем. Если такая несостоятельность квантовой механики связана с гравитацией, то умозрительно рассуждая, мы могли бы ожидать, что это происходит для масс таких, что 𝐺𝑀²/ℏ𝑐, или 𝑀~10⁻⁵ г, что соответствует приблизительно 10¹⁸ частиц. Квантовая механика даёт довольно глупые ответы для объектов такого размера; если мы вычислим вероятность того, что песчинка перепрыгнула через стену, то получим такие ответы как 10⁻²⁶⁰⁰⁰⁰, которые представляются довольно нелепыми. Следовательно, мы не должны пренебрегать рассмотрением того, что возможно квантовая механика не верна для больших масштабов и не выполнима для объектов нормального (немикроскопического) размера. В этой связи мы могли бы обсудить, как теория наблюдения и измерения создаёт некоторые проблемы. Для примера давайте поговорим о придуманном Шрёдингером парадоксе кота. Это не настоящий парадокс в том смысле, что имеется два различных ответа при использовании соответствующих логических рассуждений, это означает, что необходимо отметить наличие философской трудности в квантовой механике, и каждый физик должен решить, какой ответ он предпочитает.

Представим себе закрытый ящик, в который помещён живой кот и подвешено ружьё; причём кот размещён таким образом, что если ружьё выстрелит, то кот умрёт. Ружьё выстреливает с помощью счётчика Гейгера, который считает частицы от радиоактивного распада; предположим, что источник такой, что мы ожидаем один отсчёт в час. Имеется следующий вопрос: Какова вероятность того, что кот остался жив спустя один час, если мы оставили его запертым в ящике?

Ответ, получаемый из квантовой механики чрезвычайно прост; имеется два возможных конечных состояния, которые мы рассматриваем; амплитуда равна


Амплитуда =


1

√2

ψ


(кот жив)

+


1

√2

ψ


(кот мёртв).


Когда мы думаем об этом ответе, то у нас появляется ощущение, что кот не видит эти вещи таким же образом; он не чувствует, что у него 1/√2 жизни и 1/√2 смерти, а чувствует или одно, или другое. Итак, то, что может соответствующим образом описываться амплитудой внешнего наблюдателя, не обязательно описывается аналогичной амплитудой, когда наблюдатель составляет часть этой амплитуды. Таким образом, внешний наблюдатель обычной квантовой механики находится в выделенном положении. Для того, чтобы убедиться в том, жив кот или мёртв, он делает маленькую дырочку в ящике и наблюдает; и только после этого он делает своё измерение, что система находится в хорошо определённом конечном состоянии; но ясно с точки зрения внутреннего наблюдателя, что результаты такого измерения внешнего наблюдателя определяются вероятностью, но не амплитудой. Таким образом, мы видим, что при традиционном описании квантовой механики мы имеем встроенное в теорию расхождение между описанием, включающим внешнего наблюдателя, и описанием без наблюдения.

Такого рода парадокс возникает всякий раз, когда мы рассматриваем усиление атомного события, так что мы узнаем, как это событие влияет на вселенную в целом. Традиционное описание общей квантовой механики всего мира чудовищно сложной волновой функцией (которая описывает всех наблюдателей), удовлетворяющей уравнению Шрёдингера


𝑖

∂Ψ

∂𝑡

=

𝐻ψ

,


Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии