Читаем Feynmann 3 полностью

Рассмотрим теперь другой случай, имеющий большое прак­тическое значение. Большинство линз, которыми мы пользуемся, имеет не одну, а две поверхности раздела. К чему это приводит? Пусть имеется стеклянная линза, ограниченная поверхностями с разной кривизной (фиг. 27.5). Рассмотрим задачу о фокусироваиии пучка света из точки О в точку О'. Как это сделать? Сначала используем формулу (27.3) для первой поверхности, забыв о второй поверхности. Это позволит нам установить, что испускаемый в точке О свет будет казаться сходящимся или расходящим­ся (в зависимости от знака фокусного расстояния) из некоторой другой точки, скажем О'. Решим теперь вторую часть задачи. Имеется другая поверхность между стеклом и воздухом, и лучи подходят к ней, сходясь к точке О'. Где они сойдутся на самом деле? Снова воспользуемся той же формулой! Находим, что они сойдутся к точке О". Таким образом можно пройти, если необ­ходимо, через 75 поверхностей, последовательно применяя одну и ту же формулу и переходя от одной поверхности к другой!

Имеются еще более сложные формулы, которые могут нам по­мочь в тех редких случаях нашей жизни, когда нам почему-то нужно проследить путь света через пять поверхностей. Однако если уж это необходимо, то лучше последовательно перебрать пять поверхностей, чем запоминать кучу формул, ведь может случиться, что нам вообще не придется возиться с поверхнос­тями!

Во всяком случае, принцип расчета таков: при переходе через одну поверхность мы находим новое положение, новую точку фокуса и рассматриваем ее как источник для следующей поверхности и т. д.

Фиг. 27.5. Построение изобра­жения, даваемого двусторонней линзой.

Фиг. 27.

6. Тонкая линза с двумя положительными радиусами кри­визны.

Часто в системах бывает несколько сортов стекла с разными показателями n1, n2, ...; поэтому для конкрет­ного решения задачи нам нужно обобщить формулу (27.3) на случай двух разных показателей n1 и n2. Нетрудно показать, что обобщенное уравнение (27.3) имеет вид

(27.7)

Особенно прост случай, когда поверхности близки друг к другу и ошибками

из-за конечной толщины можно пренебречь. Рассмотрим линзу, изображенную на фиг. 27.6, и поставим такой вопрос: каким условиям должна удовлетворять линза, чтобы пучок из О фокусировался в О'? Пусть свет проходит точно через край линзы в точке Р. Тогда (пренебрегая временно толщиной линзы Т с показателем преломления n2) излишек времени на пути ОРО' будет равен (n1/i2/2s)+(n1h2/2s'). Чтобы уравнять время на пути ОРО' и время на прямолинейном пути, линза должна обладать в центре такой толщиной Т, чтобы она задер­живала свет на нужное время. Поэтому толщина линзы Т долж­на удовлетворять соотношению:

(27.8)

Можно еще выразить Т через радиусы обеих поверхностей RI

и R2. Учитывая условие 3 (приведенное на стр. 27), мы на­ходим для случая R12 (выпуклая линза)

(27.9)

Отсюда получаем окончательно

(27.10)

Отметим, что, как и раньше, когда одна точка находится на бес­конечности, другая будет расположена на расстоянии, которое

мы называем фокусным расстоянием f. Величина f определяется равенством

(27.11)

где n=n2/n1

В противоположном случае, когда s стремится к бесконеч­ности, s' оказывается на фокусном расстоянии /'. Для нашей линзы фокусные расстояния совпадают. (Здесь мы встречаемся еще с одним частным случаем общего правила, по которому отношение фокусных расстояний равно отношению показателей преломления тех двух сред, где лучи фокусируются. Для нашей оптической системы оба показателя одинаковы, а поэтому фокусные расстояния равны.)

Забудем на время формулу для фокусного расстояния. Если вы купили линзу с неизвестными радиусами кривизны и каким-то показателем преломления, то фокусное расстояние можно просто измерить, собирая в фокус лучи, идущие от удаленного источника. Зная f, удобнее переписать нашу формулу сразу в терминах фокусного расстояния:

(27.12)

Давайте посмотрим теперь, как работает эта формула, и что из нее получается в разных случаях. Во-первых, если одно из расстояний s и s' бесконечно, другое равно f. Это условие озна­чает, что параллельный пучок света фокусируется на расстоянии / и может использоваться на практике для определения f. Инте­ресно также, что обе точки движутся в одну сторону. Если одна идет направо, то и вторая движется в ту же сторону. И наконец, если s и s' одинаковы, то каждое из них равно 2f.

§ 4. Увеличение

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии