Читаем Feynmann 3 полностью

Другой интересный пример! На пути света под некоторым уг­лом поставлена четырехгранная стеклянная призма с параллель­ными гранями. Свет проходит из точки А в В и, встретив на сво­ем пути призму (фиг. 26.6), отклоняется, причем длительность пути в призме уменьшается за счет изменения наклона траекто­рии, а путь в воздухе немного удлиняется. Участки траектории вне призмы оказываются параллельными друг другу, потому что углы входа и выхода из призмы одинаковы.

Третье интересное явление состоит в том, что когда мы смот­рим на заходящее солнце, то оно на самом деле находится уже ниже линии горизонта! Нам кажется, что солнце еще над гори­зонтом, а оно фактически уже зашло (фиг. 26.7). Дело здесь в следующем. Земная атмосфера вверху разрежена, а в нижних слоях более плотная. Свет распространяется в воздухе медлен­нее, чем в вакууме, и поэтому солнечные лучи достигнут какой-то точки за горизонтом быстрее, если будут двигаться не по прямой линии, а по траектории с более крутым наклоном в плотных слоях атмосферы, сокращая таким образом свой путь в этих слоях.

Еще пример того же рода — мираж, который часто на­блюдают путешественники на раскаленных солнцем дорогах. Они видят на дороге «воду», а когда подъезжают туда, то кру­гом оказывается все сухо, как в пустыне! Сущность явления в следующем. То, что мы видим в этом случае, это «отраженный» дорогой свет. На фиг. 26.8 показано, как падающий на дорогу луч света попадает к нам в глаз. Почему? Воздух сильно раска­лен над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным, а потому и скорость света в нем больше, чем в холодном.

Фиг.

26.6. Луч света, выходя­щий из прозрачной пластины, параллелен падающему лучу.

Фиг. 26.7. У горизонта Солнце кажется на 1

/2градуса выше, чем на самом деле.

Другими словами, свет быстрее проходит в теплых слоях, чем в холодных. Поэтому свет проходит не по прямой, а идет по траектории с наименьшим временем, заворачивая для этого в теплые слои воздуха, чтобы сократить время. Таким образом, свет идет по кривой.

И еще один пример. Представим себе такую ситуацию, когда весь свет, испускаемый в точке Р, собирается обратно в другую точку Р' (фиг. 26.9). Это означает, конечно, что свет может попасть из точки Р в Р' по прямой линии. Это правильно. Но как устроить так, чтобы свет, идущий от

Р к Q, тоже попал в Р'? Мы хотим собрать весь свет снова в одной точке, которую называют фокусом. Как это сделать? Поскольку свет всегда выбирает путь с наименьшим временем, то наверняка он не пойдет по другим предложенным нами путям. Единственный способ сделать целый ряд близлежащих траекторий приемлемы­ми для света — это устроить так, чтобы для всех время прохож­дения было точно одинаковым! В противном случае свет пойдет по траектории, требующей минимального времени. Поэтому задача построения фокусирующей системы сводится просто к созданию устройства, в котором свет тратит на всех путях оди­наковое время!

Такое устройство создать просто. Возьмем кусок стекла, в котором свет движется медленнее, чем в воздухе (фиг. 26.10). Проследим путь луча света, проходящего в воздухе по линии PQP'. Этот путь длиннее, чем прямо из Р в Р', и наверняка за­нимает больше времени. Но если взять кусок стекла нужной тол­щины (позже мы вычислим, какой именно), то путь в нем ском­пенсирует добавочное время, затрачиваемое при отклонении луча на траектории PQP'. При этих условиях можно устроить так, чтобы время, затрачиваемое светом на пути по прямой, совпадало со временем, затрачиваемым на пути PQP'. Точно так же, если взять частично отклоненный луч PRR'P' (более короткий, чем PQP'), то придется скомпенсировать уже не так много времени, как для прямолинейной траектории, но некото­рую долю времени все же скомпенсировать придется.

Фиг. 26.8. Мираж.

Фиг, 26.9. Оптический «черный ящик».

В резуль­тате мы приходим к форме куска стекла, изображенной на фиг. 26.10. При такой форме весь свет из точки Р попадет в Р'. Всё это нам известно уже давно, и называется такое устройство собирательной линзой. В следующей главе мы вычислим, какой должна быть форма линзы, чтобы получить идеальную фокуси­ровку.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии