Читаем Feynmann 3a полностью

Направим на поляроид пучок света, поляризованный под углом q к его оси. Какая интенсивность будет у пучка, прошед­шего через поляроид? Разложим наш пучок света на две компо­ненты: одну с поляризацией, перпендикулярной той, которая проходит без ослабления (она пропорциональна sinq), и вто­рую—продольную компоненту, пропорциональную cosq. Через поляроид пройдет только часть, пропорциональная cosq; компонента, пропорциональная sinq, поглотится. Амплитуда света, прошедшего через поляроид, меньше амплитуды падаю­щего света и получается из нее умножением на cosq.

Фиг. 33.4. Отражение линейно поляризованного света под углом Врюстера.

Направление поляризации дается пунк­тирными стрелками: круглые точки изображают поляризацию, перпендику­лярную плоскости страницы.

Интен­сивность света пропорциональна квадрату cosq. Таким обра­зом, если падающий свет поляризован под углом q к оси по­ляроида, пропускаемая поляризатором доля интенсивности составляет cos2q от полной. Доля интенсивности, поглощаемая в поляроиде, есть, разумеется, sin2

q.

Интересный парадокс возникает в следующем опыте. Из­вестно, что два поляроида с осями, расположенными перпен­дикулярно друг другу, не пропускают света. Но если между такими поляроидами поместить третий, ось которого направлена под углом 45° к осям двух других, часть света пройдет через нашу систему. Как мы знаем, поляроид только поглощает свет, создать свет он не может. Тем не менее, поставив третий поля­роид под углом 45°, мы увеличиваем количество прошедшего света. Вы можете сами проанализировать это явление в каче­стве упражнения.

Одно из интереснейших поляризационных явлений, возни­кающее не в сложных кристаллах и всяких специальных мате­риалах, а в простом и очень хорошо знакомом случае,— это отражение от поверхности. Кажется невероятным, но при отра­жении от стекла свет может поляризоваться, и объяснить физи­чески такой факт весьма просто. На опыте Брюстер показал, что отраженный от поверхности свет полностью поляризован, если отраженный и преломленный в среде лучи образуют прямой угол. Этот случай показан на фиг. 33.4.

Если падающий луч поляризован в плоскости падения, отраженного луча не будет совсем. Отраженный луч возникает только при условии, что падающий луч поляризован перпенди­кулярно плоскости падения. Причину этого явления легко понять. В отражающей среде свет поляризован перпендикуляр­но направлению движения луча, а мы знаем, что именно дви­жение зарядов в отражающей среде генерирует исходящий из нее луч, который называют отраженным. Появление этого так называемого отраженного луча объясняется не просто тем, что падающий луч отражается; мы теперь уже знаем, что падаю­щий луч возбуждает движение зарядов в среде, а оно в свою очередь генерирует отраженный луч.

Из фиг. 33.4 ясно, что только колебания, перпендикулярные плоскости страницы, дают излучение в направлении отраженно­го луча, а следовательно, отраженный луч поляризован перпен­дикулярно плоскости падения. Если же падающий луч поляри­зован в плоскости падения, отраженного луча не будет совсем.

Это явление легко продемонстрировать при отражении линейно поляризованного луча от плоской стеклянной пластин­ки. Поворачивая пластинку под разными углами к направлению падающего поляризованного луча, можно заметить резкий спад интенсивности при значении угла, равном углу Брюстера. Это падение интенсивности наблюдается только в том случае, когда плоскость поляризации совпадает с плоскостью падения. Если же плоскость поляризации перпендикулярна плоскости падения, заметного спада интенсивности отраженного света не наблюдается.

§ 5. Оптическая активность

Перейти на страницу:

Похожие книги

Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература