Читаем Feynmann 6a полностью

системе отсчета интервал At может соответствовать изменению как t', так и х', так что при изменении только t' изменение х будет другим. Для наших дифференцирований следовало бы найти такую переменную, которая была бы мерой «интервала» в пространстве-времени и оставалась бы той же самой во всех системах отсчета. Когда в качестве этого интервала мы принимаем приращение Dх, то оно будет тем же во всех системах отсчета. Когда частица «движется» в четырехмерном пространстве, то возникают приращения как Dt, так и Dх, Dy, Dz. Можно ли из них сделать интервал? Да, они образуют компоненты приращения четырехвектора хm=(сt, х, у, г), так что, если определить величину Ds через

что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из вели­чины As или ее предела ds, мы можем определить параметр



Хорошим четырехмерным оператором будет и производ­ная по s, т. е. d/

ds, так как она инвариантна относительно пре­образований Лоренца.

Для движущейся частицы ds легко связывается с dt. Для точечной частицы

(26.30)

а

Таким образом, оператор


есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости


Теперь мы видим, почему Ц(l-v2/c2) поправляет дело.

Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траекто­рии частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Dx=Dy=Dz=0, a Ds=Dt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.

Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:


(26.32)

где fm определяется формулой (26.28). Импульс же рm

может быть записан в виде


(26.33)

где координаты xm=(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:

(26.34)

напоминающей уравнения F=ma. Важно отметить, что урав­нения (26.34) и F=ma — вещи разные, ибо четырехвекторная форма уравнения (26.34) содержит в себе релятивистскую ме­ханику, которая при больших скоростях отличается от механики Ньютона. Это абсолютно непохоже на случай уравнений Максвелла, где нам нужно был о переписать уравнения в реляти­вистской форме, совершенно не изменяя их смысла, а изменяя лишь обозначения.

Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть.

Три компоненты F, поделенные на Ц(1-v2/c2), составляют про­странственные компоненты fm , так что

Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/Ц(1-v2/c2), vy/Ц(1-v2/c2) и vz/

Ц(1-v2/c2) представляют t-, у- и z-компоненты 4-скорости um. Компоненты же Е и В входят в электромагнитный тензор вто­рого ранга Fmv. Отыскав в табл. 26.1 компоненты Fmv, соответ­ствующие Ех, Вг и Вv , получим



здесь уже начинает вырисовываться что-то интересное. В каж­дом слагаемом есть индекс х, и это разумно, ибо мы находим х-компоненту силы. Все же остальные индексы появляются в парах tt, yy, zz

все, кроме слагаемого с хх, которое куда-то делось. Давайте просто вставим его и запишем


Этим мы ничего не изменили, так как благодаря антисимметрии Fmv слагаемое Fxx равно нулю. Причиной же нашего желания восстановить его является возможность сокращенной записи уравнения (26.36):

(26.37)

Это по-прежнему уравнение (26.36), если предварительно мы примем соглашение: когда какой-то индекс встречается в произ­ведении дважды (подобно v), нужно автоматически суммировать все слагаемые с одинаковыми значениями этого индекса точно так же, как и в скалярном произведении, т. е. пользуясь тем же самым правилом знаков.

Нетрудно поверить, что уравнение (26.37) так же хорошо работает и для m=y, и для m=z. Но как обстоит дело с m=t? Посмотрим для забавы, что дает формула


Теперь мы снова должны перейти к Е и В. После этого получается



или



Но в (26.28) ft бралось равным

А это одно и то же, что (26.38), ибо v·(vXB) равно нулю. Так что все идет как нельзя лучше.

В результате наше уравнение движения записывается в элегантном виде:


(26.39)

Как ни приятно видеть столь красиво записанное уравнение, форма эта не особенно полезна. При нахождении движения частицы обычно удобнее пользоваться первоначальным урав­нением (26.24), что мы и будем делать в дальнейшем.

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука