Читаем Feynmann 6a полностью

Но давайте все-таки встанем на более консервативную точку зрения и будем говорить, по крайней мере временно, что имеется два сорта масс и что полный импульс предмета должен быть суммой механического и электромагнитного импульсов. Причем механический импульс равен произведению «механической» массы mмех на скорость v. В тех экспериментах, где масса частицы измеряется, например, определением импульса или «кручением на веревочке», мы находим ее полную массу. Им­пульс равен произведению именно полной массы (mмех+mэм) на скорость. Таким образом, наблюдаемая масса может состоять из двух (а может быть, и из большего числа, если мы учтем другие поля) частей: механической и электромагнитной. Мы знаем, что наверняка имеется электромагнитная часть; для нее у нас есть даже формула. А сейчас появилась увлекательная возможность выбросить механическую массу совсем и считать массу полностью электромагнитной.

Посмотрим, каков должен быть размер электрона, если «механическая» часть массы полностью отсутствует. Это можно выяснить, приравнивая электромагнитную массу (28.4) наблю­даемой массе электрона, т. е. mе. Получаем

(28.5)

Величина

(28.6)

называется «классическим радиусом электрона» и равна она 2,82X10=13 см,

т. е. одной стотысячной диаметра атома.

Почему радиусом электрона названа величина r0, а не а? Потому что мы можем провести те же самые расчеты с другим распределением заряда. Мы можем взять его равномерно размазанным по всему объему шара или наподобие пушистого шарика. Например, для заряда, равномерно распределенного по всему объему сферы, коэффициент 2/3 заменяется коэффициентом 4/5

. Вместо того чтобы спорить, какое распределение правильно, а какое нет, было решено взять в качестве «номинального» ра­диуса величину r0. А разные теории приписывают к ней свой коэффициент.

Давайте продолжим наше обсуждение электромагнитной теории массы. Мы провели расчет для v<<с, а что произойдет при переходе к большим скоростям? Первые попытки вычисления привели к какой-то путанице, но позднее Лоренц понял, что при больших скоростях заряженная сфера должна сжиматься в эллипсоид, а поля должны изменяться согласно полученным нами для релятивистского случая в гл. 26 формулам (26.6) и (26.7). Если вы проделаете все вычисления для р в этом слу­чае, то получите, что для произвольной скорости v импульс умножается еще на 1/Ц(1-v2/c2), т. е.



(28.7)

Другими словами, электромагнитная масса возрастает с увеличением скорости обратно пропорционально Ц(1-v2/c

2). Это открытие было сделано еще до создания теории относительности.

Тогда предлагались даже эксперименты по определению зависимости наблюдаемой массы от скорости, чтобы установить, какая часть ее электрическая по своему происхождению, а какая — механическая. В те времена считали, что электромаг­нитная часть массы должна зависеть от скорости, а ее механи­ческая часть — нет.

Но пока ставились эксперименты, теоретики тоже не дремали. И вскоре была развита теория относительности, которая дока­зала, что любая масса, независимо от своего происхождения, должна изменяться как m0/Ц(1-v2/c2). Таким образом, уравнение (28.7) было началом теории, согласно которой масса зависит от скорости.

А теперь вернемся к нашим вычислениям энергии поля, которые привели к выводу выражения (28.2). Энергия U

в соот­ветствии с теорией относительности эквивалентна массе U/с2, поэтому (28.2) говорит, что поле электрона должно обладать массой

(28.8)

которая не совпадает с электромагнитной массой mэм, опреде­ленной формулой (28.4). В самом деле, если бы мы просто скомбинировали выражения (28.2) и (28.4), то должны были бы написать

Эта формула была получена еще до теории относительности, и когда Эйнштейн и другие физики начали понимать, что U всегда должно быть равно mc2, то замешательство было очень велико.

§ 4. С какой силой электрон действует сам на себя?

Разница между двумя формулами электромагнитной массы особенно обидна, потому что совсем недавно мы доказали согла­сованность электродинамики с принципами относительности. Кроме того, теория относительности неявно и неизбежно пред­полагает, что импульс должен быть равен произведению энергии на v/c2. Неприятная история! По-видимому, мы где-то допустили ошибку. Конечно, не алгебраическую ошибку в наших расчетах, а где-то проглядели что-то существенное.

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука