Читаем Feynmann 6a полностью

Чтобы избежать такого вертикального дрейфа, нужны какие-то устройства; магнитное поле должно обеспечивать как радиальную, так и «вертикальную» фокусировки.

Сразу же можно догадаться, что радиальную фокусировку обеспечивает созданное магнитное поле, которое увеличивается с ростом расстояния от центра проектируемого пути. Тогда, если частица выйдет на больший радиус, она окажется в более сильном поле, которое вернет ее назад на нужную орбиту. Если она перейдет на меньший радиус, то «загибание» будет меньше и она снова вернется назад на желаемый радиус. Если частица внезапно начала двигаться под углом к идеальной орбите, она начнет осциллировать относительно нее (фиг. 29.И, а) и радиаль­ная фокусировка будет удерживать частицу вблизи кругового пути.

Фактически радиальная фокусировка происходит даже при противоположном «наклоне». Это может происходить в тех слу­чаях, когда радиус кривизны траектории увеличивается не быстрее, чем расстояние частицы от центра поля. Орбиты частиц будут подобны изображенным на фиг. 29.11,6. Но если градиент поля слишком велик, то частицы не вернутся на желаемый ра­диус, а будут по спирали выходить из поля либо внутрь, либо наружу (фиг. 29.11,в).


«Наклон» поля мы обычно характеризуем «относительным градиентом», или индексом поля n

(29.2)

Направляющее поле создает радиальную фокусировку, если относительный градиент будет больше -1.

Радиальный градиент поля приведет также к вертикальным силам, действующим на частицу. Предположим, мы имеем поле, которое вблизи центра орбиты сильнее, а снаружи слабее. Вертикальное поперечное сечение магнита под прямым углом к орбите может иметь такой вид, как показано на фиг. 29.12. (Причем протоны летят на нас из страницы.) Если нам нужно, чтобы поле было сильнее слева и слабее справа, то магнитные силовые линии должны быть искривлены подобно изображен­ным на рисунке. То, что это должно быть так, можно уви­деть из закона равенства нулю циркуляции В в пустом прос­

транстве. Если выбрать систему координат, показанную на рисунке, то

или


(29.3)


Фиг. 29.12. Вертикаль­но фокусирующее поле.

Вид в поперечном сечении, перпендикулярном к орбите.

Поскольку мы предполагаем, что дВz/дх

отрицательно, то рав­ным ему и отрицательным должно быть и дВхz. Если «номиналь­ной» плоскостью орбиты является плоскость симметрии, где В
х=0, то радиальная компонента Вх будет отрицательной над плоскостью и положительной под ней. При этом линии должны быть искривлены так, как это изображено на рисунке.

Такое поле должно обладать вертикально фокусирующими свойствами. Представьте себе протон, летящий более или менее параллельно центральной орбите, но выше нее. Горизонтальная компонента В будет действовать на протон с силой, направлен­ной вниз. Если же протон находится ниже центральной орбиты, то сила изменит свое направление. Таким образом, возникает эффективная «восстанавливающая сила», направленная к центру орбиты. Из наших рассуждений получается, что при условии уменьшения вертикального поля с увеличением радиуса должна происходить вертикальная фокусировка. Однако если градиент поля положительный, то происходит «вертикальная дефоку­сировка». Таким образом, для вертикальной фокусировки индекс поля n должен быть меньше нуля. Выше мы нашли, что для ра­диальной фокусировки значение n должно быть больше -1. Комбинация этих двух условий требует для удержания частиц на стабильных орбитах, чтобы

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука