Читаем Feynmann 7 полностью

Мы говорили, что металлы обычно имеют простую кубиче­скую кристаллическую структуру; сейчас мы обсудим их меха­нические свойства, которые зависят от этой структуры. Вообще говоря, металлы очень «мягкие», потому что один слой кристал­ла легко заставить скользить над другим. Вы, наверное, поду­маете: «Ну, это дико — металлы ведь твердые». Нет, монокри­сталл металла легко деформируется.

Рассмотрим два слоя кристалла, подвергающихся действию силы сдвига (фиг. 30.11, а).

Фиг. 30.11. Сдвиг плоскостей кристалла.

Вероятно, вы сперва решите, что весь слой будет сопротивляться сдвигу, пока сила не станет до­статочно велика, чтобы сдвинуть весь слой «над горбами» на одно место влево. Хотя скольжение по некоторой плоскости возможно, все происходит совсем не так. (Иначе, согласно вы­числениям, получилось бы, что металл гораздо прочнее, чем он есть на самом деле.) В действительности же дело больше по­ходит на то, что атомы перескакивают поочередно: сначала прыгает первый атом слева, затем следующий и т. д., как по­казано на фиг. 30.11, б. В результате пустое место между дву­мя атомами быстро путешествует направо и весь второй ряд сдвигается на одно межатомное расстояние. Скольжение происходит таким образом, что на перекатывание атома через горб поодиночке требуется гораздо меньше энергии, чем на подня­тие всего ряда в целом. Как только сила возрастет до значения, достаточного для начала процесса, весь процесс протекает очень быстро.

Оказывается, что в реальном кристалле скольжение возни­кает поочередно: сначала в одной плоскости, затем заканчи­вается там и начинается в другом месте. Почему оно начинается и почему заканчивается — совершенно непонятно. В самом деле, очень странно, что последовательные области скольжения ча­сто расположены довольно редко. На фиг. 30.12 представлена фотография очень маленького и тонкого кристалла меди, кото­рый был растянут.

Фиг. 30.12. Маленький кристалл меди после растяжения.

Вы можете заметить разные плоскости, в ко­торых возникало скольжение.

Неожиданное соскальзывание отдельных кристаллических плоскостей легко заметить, если взять кусок оловянной проволоки, в которой содержатся большие крис­таллы, и растягивать ее, держа близко к уху. Вы ясно различите звуки «тик-тик», когда плос­кости защелкиваются в новых положениях, одна за другой.

Проблема «нехватки» атома в одном из ря­дов сложнее, чем может показаться при рассма­тривании фиг. 30.11.

Когда слоев больше, си­туация скорее походит на то, что изображено на фиг. 30.13.

Фиг. 30.13. Дислокация в кристалле.

Подобный дефект в кристалле называют дислокацией. Считается, что такие дислокации возникают при образовании кри­сталла или же в результате царапины или трещины на его поверхности. Раз возникнув, они довольно свободно могут проходить сквозь кристалл. Большие на­рушения возникают из-за движения множества таких дислокаций.

Дислокации могут свободно передвигаться. Это значит, что для них требуется немного дополнительной энергии, если только весь остальной кристалл имеет совершенную решетку. Но они могут и «застыть», встретив какой-нибудь другой дефект в кристалле. Если для прохождения дефекта требуется много энергии, они остановятся. Это и есть тот механизм, который сообщает прочность несовершенным

кристаллам металла. Кри­сталлы чистого железа совсем мягкие, но небольшая концент­рация атомов примесей может вызвать достаточное количество дефектов, чтобы противостоять дислокациям. Как вы знаете, сталь, состоящая в основном из железа, очень тверда. Чтобы получить сталь, при плавке к железу примешивают немного углерода; при быстром охлаждении расплавленной массы угле­род выделяется в виде маленьких зерен, образуя в решетке множество микроскопических нарушений. Дислокации уже не могут свободно передвигаться, и металл становится твердым.

Чистая медь очень мягкая, но ее можно «закалить» накле­пом. Это делается отбиванием или сгибанием ее в одну и другую стороны. В таком случае образуется много различных дисло­каций, которые взаимодействуют между собой и ограничивают подвижность друг друга. Быть может, вы видели фокус, когда берут кусочек «мягкой» меди и легко обвивают чье-нибудь запястье в виде браслета. В тот же момент медь становится закаленной и разогнуть ее становится очень трудно! «Закаленный» металл типа меди можно снова сделать мягким с помощью от­жига при высокой температуре. Тепловое движение атомов «размораживает» дислокации и вновь создает отдельные боль­шие кристаллы. О дислокациях можно рассказывать очень много. Так, до сих пор мы описывали только так называемые «дислокации скольжения» (краевые дислокации). Существует еще множество других видов, в частности винтовая дислокация, изображенная на фиг. 30.14.

Фиг. 30.14. Винтовая дислокация.

Такие дислокации часто играют важную роль в росте кристаллов.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки