Читаем Feynmann 9 полностью

Раз мы определили y (х) как амплитуду того, что электрон в состоянии y обнаружится в точке х, то хотелось бы интер­претировать квадрат абсолютной величины y как вероятность обнаружить электрон в точке х. Но, к сожалению, вероятность обнаружить электрон в точности в каждой данной точке равна нулю. Электрон в общем случае размазывается по какому-то участку прямой, и поскольку точек на каждом участке беско­нечно много, то вероятность оказаться в любой из них не может быть конечным числом. Вероятность обнаружить электрон мы можем описать только на языке распределения вероятно­стей, которое дает относительную вероятность обнаружить электрон в различных неточно указанных местах прямой. Пусть Вер. (х, Dх) обозначает вероятность обнаружить электрон в узком интервале Dх: возле точки х. Если мы в каждой физичес­кой ситуации будем пользоваться достаточно мелким масшта­бом, то вероятность будет от точки к точке меняться плавно, и вероятность обнаружить электрон в произвольном конечном маленьком отрезке прямой Dх; будет пропорциональна Dх. И можно так изменить наши определения, чтобы это было учтено. Можно считать, что амплитуда <x|y> представляет своего рода «плотность амплитуд» для всех базисных состояний |х> 1

в узком интервале х. Поскольку вероятность обнаружить

iэлектрон в узком интервале Dх вблизи х должна быть пропор­циональна длине интервала Dх, мы выберем такое определение <х |y>, чтобы соблюдалось следующее условие: Вер. (х, Dх)=| |2Dх. Амплитуда <x|y> поэтому пропорциональна амплитуде того, что электрон в состоянии y будет обнаружен в базисном состоя­нии х, а коэффициент пропорциональности выбран так, что квадрат абсолютной величины амплитуды <x|y> дает плот­ность вероятности

обнаружить электрон в любом узком интер­вале. Можно писать и так:

Вер. (x, Dх)=| y (х)|2 Dх. (14.17)

Теперь надо изменить некоторые наши прежние уравнения, чтобы согласовать их с этим новым определением амплитуды вероятности. Пусть имеется электрон в состоянии |y>, а мы хотим знать амплитуду того, что он будет обнаружен в дру­гом состоянии |y>, которое может соответствовать другим условиям размазанности электрона. Когда речь шла о конеч­ной системе дискретных состояний, мы пользовались уравне­нием (14.5). До изменения нашего определения амплитуд мы должны были писать

А теперь если обе эти амплитуды нормированы так, как описано выше, то сумма по всем состояниям из узкого интервала х будет эквивалентна умножению на Dx, а сумма по всем значениям х превратится просто в интеграл. При наших измененных опре­делениях правильная формула будет такой:

Амплитуда <x|y> — это то, что мы теперь называем y (х); точно так же амплитуду <x

|y> мы обозначим j(х). Вспоминая, что x> комплексно сопряжена с <x|j>, мы можем (14.18) переписать в виде

При наших новых определениях все формулы останутся преж­ними, если только всюду знак суммы заменить интегрирова­нием по х.

К тому, что было сказано, нужно сделать одну оговорку. Любая подходящая система базисных состояний должна быть полной, если хотят, чтобы она сполна отражала все, что проис­ходит. Для одномерного движения электрона в действитель­ности недостаточно указать только базисные состояния |x>, потому что в каждом из этих состояний спин электрона может быть направлен вверх или вниз. Один из способов получить полную систему — взять две совокупности состояний по х: одну для спина вверх, другую для спина вниз. Мы, впрочем, пока не будем входить в такие подробности.

§ 3. Состояния с определенным импульсом

Пусть у нас имеется электрон в состоянии |y>, описывае­мом амплитудой вероятности |y>=y (х). Мы знаем, что y (х) обозначает состояние, в котором электрон размазан по прямой по какому-то закону, так что вероятность обнаружить его в узком интервале dx

близ точки х попросту равна

Вер. (х, dx)=|y (х)|2dx.

Что можно сказать об импульсе этого электрона? Можно спро­сить, какова вероятность того, что импульс этого электрона равен р? Начнем с расчета амплитуды того, что состояние |y> присутствует в другом состоянии | имп. p>, которое мы опреде­лим как состояние с определенным импульсом р. Эту амплитуду можно найти, применяя наше основное уравнение для разло­жения амплитуд (14.20). В терминах состояний |имп. p>

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука