Читаем Feynmann 9 полностью

Это-то мы и хотели получить — математическую формулировку симметрии. Когда соблюдается (15.10), мы говорим, что операторы U^ и Q^ коммутируют. Тогда «симметрию» можно опреде­лить следующим образом: физическая система симметрична относительно операции Q^, когда Q^ коммутирует с U^ опера­цией прошествия времени). [На языке матриц произведение двух операторов равнозначно матричному произведению, так что (15.10) в системе, симметричной относительно преобразова­ния Q^, выполняется и для матриц Q^ и U^.]

Кстати, поскольку для бесконечно малого времени 8 мы имеем [7=1 — iH^e/h, где H^ — обычный гамильтониан [см. гл. 6 (вып. 8)1, то легко видеть, что когда (15.10) выполнено, то вы­полнено и

Так что (15.11) есть математическая формулировка условий на симметричность физической ситуации относительно оператора Q^. Она определяет симметрию.

§ 2. Симметрия и ее сохранение

Прежде чем применять только что найденный результат, хотелось бы еще немного вникнуть в идею симметрии. Положим, что стечение обстоятельств таково, что после действия опера­тора Q^ на состояние получается опять то же состояние. Это очень частный случай, но все же допустим, что так сложилось, что состояние |y'>=Q^|y0>. физически совпадает с состоянием |y0>. Это значит, что |y'> равняется |y0>, если не считать не­которого фазового множителя. Как это себе представлять? Пусть, например, имеется ион H+2 в состоянии, которое мы когда-то обозначали |I

>. У этого состояния имеется одинаковая ам­плитуда побывать в базисных состояниях |1> и |2>. Вероят­ности показаны столбиками на фиг. 15.3, а.

Фиг. 15.3. Состояние |I> и состояние P^|I>, получае­мые отражением |I> в плоскости, проходящей посреди­не между атомами в ионе Н2+.

Если мы на состояние |I> подействуем оператором отраже­ния Р^, он перевернет его, поменяв местами |1> с|2

>, а |2> с|1>; полу­чатся вероятности, по­казанные на фиг. 15.3,б. Перед нами опять состояние |I>. Если начать с состояния |II>, то вероятности до и после отражения будут выглядеть тоже одинаково. Правда, если посмотреть на ампли­туды, то разница все же есть. У состояния |I> после отраже­ния амплитуды останутся теми же, у состояния | //) они приобретут противоположный знак. Иными словами,

Если написать , то у состояния |I> мы имеем еid=1, а у состояния |II> имеем еid=-1.

Возьмем другой пример. Пусть у нас есть правополяризованный по кругу фотон, распространяющийся в направлении z. Если мы совершим операцию поворота вокруг оси z, то, как мы знаем, это просто приведет к умножению амплитуды на eij, где j — угол поворота. Значит, в этом случае для операции поворота 8 просто равно углу поворота.

Далее, ясно, что если оказывается верным,

что оператор Q^ в какой-то момент времени просто меняет фазу состояния (ска­жем, в момент t=0), то это будет верно всегда. Иначе говоря, если состояние |y1> переходит за время t в состояние |y2>:

и если симметрия физической картины такова, что

то верно и то, что

Это ясно, ведь

[Верхние равенства следуют из (15.13) и (15.10) для симметричной системы, нижние — из (15.14) и из того, что всякое число, скажем еid, коммутирует с оператором.]

Итак, при некоторых симметриях то, что верно сначала, вер­но всегда. Но разве это не закон сохранения? Да! Он утверждает, что если вы взглянете на исходное состояние и, проделав где-то в стороне небольшой подсчет, откроете, что операция, которая является операцией симметрии для системы, приводит только к умножению на некоторый фазовый множитель, то вы будете уверены, что это же свойство будет выполнено для конечного состояния — та же операция умножит и конечное состояние на тот же фазовый множитель. Это будет верно всегда, даже если вы ничего не знаете о том внутреннем механизме мира, который изменяет систему от начального состояния к конечному. Даже если вы не позаботились вглядеться в детали того, каким именно способом система переходит от одного состояния к другому, вы все равно имеете право говорить, что если вещь вначале находилась в состоянии с определенным характером симметрии и если гамильтониан этой вещи симметричен отно­сительно этой операции симметрии, тогда тот же характер симметрии останется у состояния на вечные времена. Это основа всех законов сохранения квантовой механики.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука