Мы хотим знать вероятность того, что протон вылетит под углом q к оси z
(в некоторый узкий телесный угол qW), как показано на фиг. 15.6. Проведем новую ось z в этом направлении и обозначим ее z'! Как анализировать, что происходит вдоль этой оси, мы знаем. По отношению к ней спин Л° уже не направлен вверх, а имеет какую-то амплитуду того, что он окажется направленным вверх и какую-то — вниз. Все это мы уже подсчитывали в гл. 4, а потом опять в гл. 8 [уравнение (8.30)] (вып. 8). Амплитуда того, что спин будет направлен вверх, есть cosq/2, а амплитуда того, что спин будет смотреть вниз, есть -sinθ/2. Когда спин L0 направлен вверх по оси z', она испустит протон в направлении z с амплитудой а. Значит, амплитуда того, что по направлению z пройдет протон, держа свой спин вверх, равнаa
cosq/2. (15.33)Точно так же амплитуда того, что вдоль положительной оси z
пройдет протон, направив свой спин вниз, равна-b
sinq/2. (15.34)Те два процесса, к которым относятся эти амплитуды, показаны
на фиг. 15.9.
Фиг
. 15.9. Два возможных состояния распада L0.Теперь зададим такой немудреный вопрос. Пусть мы собираемся регистрировать протоны, вылетающие под углом q, не интересуясь их спином. Два спиновых состояния (вверх и вниз по оси z') различимы, даже если бы мы того и не хотели. Значит, чтобы получить вероятность, надо амплитуды возвысить в квадрат и сложить. Вероятность f
(q) обнаружить протон в небольшом телесном угле qW при q равна
Вспоминая, что
запишем f
(q) так:
Угловое распределение имеет вид
Одна часть вероятности не зависит от q, а другая зависит от cosq линейно. Из измерений углового распределения мы можем получить a и b, а значит, и |а
| , и |b|.Можно получить ответ и на многие другие вопросы. Может быть, вас интересуют лишь те протоны, спин которых направлен вверх относительно старой
оси z? Каждый член в (15.33) и (15.34) даст амплитуду того, что спин протона окажется направленным вверх или вниз по отношению к оси z' (|+z'> и |-z'>). А состояние, когда спин направлен вверх относительно старой оси, | + z), можно выразить через два базисных состояния | + z'> и |-z'>. Можно тогда взять две амплитуды (15.33) и (15.34) с надлежащими коэффициентами (cosq/2 и -sinq/2) и получить полную амплитуду
Ее квадрат даст вероятность того, что протон вылетит под углом q со спином, направленным туда же, куда направлен спин L0
(вверх по оси z).Если бы четность сохранялась, можно было бы сделать еще одно утверждение. Распад на фиг. 15.8 — это просто зеркальное отражение, скажем в плоскости yz
, распада с фиг. 15.7. Если бы четность сохранялась, b равнялось бы либо a, либо -а. Тогда коэффициента в (15.37) был бы равен нулю и распад одинаково часто происходил бы во всех направлениях.Результаты опытов говорят, однако, что при распаде асимметрия существует.
Измеренное угловое распределение действительно, как мы предсказали, меняется по закону cosq, а не по закону cos2q или по другой степени. Из этого углового распределения, стало быть, следует, что спин L0 равен 1/2. Кроме того, мы видим, что четность не сохраняется. Действительно, коэффициента на опыте найден равным -0,62±0,05, так что b примерно вдвое больше а. Отсутствие симметрии относительно отражений совершенно очевидно.Вы видите, как много можно вывести из сохранения момента количества движения. Еще некоторые примеры будут приведены в следующей главе.
· · ·
Замечание после лекции.
Под амплитудой а здесь мы подразумевали амплитуду того, что состояние| протон летит по + z, спин по + z> образовано за бесконечно малое время dt
из состояния |L, спин по + z>, или, иными словами, что<протон летит по +z
, спин по +z|H|L, спин по + z>= iha, (15.38)где H
— гамильтониан всего мира или по крайней мере той его части, которая ответственна за L-распад. Сохранение момента количества движения означает, что у гамильтониана должно быть такое свойство:<протон летит по +z, спин по -z|H
|L, спин по +z>=0. (15.39)Под амплитудой b
подразумевается, что<протон летит по + z, спин по —z|H
|L, спин по -z>=ihb. (15.40)Сохранение момента количества движения предполагает, что
<протон летит по + z, спин по +z
|H|L, спин по -z>=0. (15.41)Если вам не ясно, как написаны амплитуды (15.33) и (15.34), можно их записать в более математической форме. Когда мы писали (15.33), нам нужна была амплитуда того, что Л со спином, направленным по +z, распадается на протон, движущийся вдоль направления +z
' и обладающий спином, направленным тоже по +z', т. е.<протон летит по + z
', спин по +z'|H|L, спин по +z>. (15.42)По общим теоремам квантовой механики эту амплитуду можно записать так:
2S<протон летит по + z', спин по +z'|H|L, i
> i|L, спин по +z>,(15.43)