Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью

Можно ли увидеть молекулы?

Действительно, можно ли' А это было бы очень полезно. Мы уверены, что то, что мы видим, существует на самом деле, хотя имеется множество оптических иллюзий. Все исследования молекул, проведенные на протяжении прошлого века, привели ученых к заключению, что увидеть молекулы — дело безнадежное. Не просто маловероятно, а именно невозможно, и по веским физическим причинам. Мы реагируем на свет, который представляет собой волны с очень малой длиной волны — всего лишь несколько тысяч ангстрем от гребня до гребня[130]. Эти волны и создают видимое изображение Невооруженным глазом мы различаем форму булавочной головки с поперечником в 1 мм, или 1 0 000 000 А°;

— с помощью увеличительного стекла можем разглядеть волос толщиной 1 000 000 А°,

— с помощью слабого микроскопа видим частицы дыма размером 100 000 А°;

— с помощью сильного микроскопа видим бактерии размером от 10 000 до 1000 А°.

Но на этом ряд обрывается. Он должен оборваться — его ограничивает длина волны видимого света. Волны могут сделать видимыми препятствия, которые по своим размерам больше или порядка их длины. Например, океанские волны оставляют за островом ясно видимую тень спокойной воды. На меньшие препятствия они реагируют совсем по-другому. Встречая небольшое деревянное бревно, океанские волны не образуют за ним никакой тени. Они просто обтекают бревно и смыкаются за ним, как будто его и нет совсем. Слепой, бредущий по берегу штормового моря, может почувствовать присутствие близлежащего острова, но никогда не узнает о маленьком бревне, которое находится где-то тут же возле него[131].

Длины световых волн лежат в пределах от 7000 А° для красного света до 4000 А° — для фиолетового. Попытка проникнуть в область коротковолнового ультрафиолета путем применения фотопленки (вместо глаза), натолкнулась на препятствие — волны поглощались, еще будучи длиннее 1000 А°; линзы, образцы и даже сам воздух «непрозрачны» для такого ультрафиолета. Рентгеновские лучи с еще более короткими длинами волн способны проходить через вещество и создавать тени, но практически не фокусируются линзами. Хотя рентгеновские лучи и имеют малые длины волн и могли бы помочь проникнуть в более тонкие детали структуры, они дают лишь теневую картину. Таким образом, барьер, созданный волновой природой света, кажется непреодолимым. Мы можем увидеть бактерии размером до 1000 А°, а вот вирусам, имеющим в десять раз меньшие размеры, суждено остаться невидимыми. Увидеть же молекулы, которые меньше вирусов в десятки раз, совсем безнадежно. А между тем вирусы, вызывающие многие болезни, привлекают пристальное внимание медиков. Существует мнение, что вирусы находятся на границе между живыми организмами и химическими молекулами. Увидев молекулы, мы смогли бы ответить на многие важнейшие вопросы химии.

Невидимость молекул доставляла много неудобств, но казалась неизбежной. В начале этого века косвенную информацию о строении молекул удалось получить с помощью рентгеновских лучей. Упорядоченные структуры атомов и молекул в кристаллах могут рассеивать рентгеновские лучи регулярным образом, наподобие того, как «расщепляется» свет, проходящий через сотканный материал (посмотрите ночью на удаленный фонарь через тонкий носовой платок или зонтик).

Картины рассеяния рентгеновских лучей выявляют расположение атомов и расстояние между слоями в кристаллах. Они подтвердили оценку размеров молекул из измерений с помощью тонких пленок масла. В последнее время дифракционные картины позволили установить очертания некоторых больших молекул, т. е. не только установить детали кристаллической структуры, но и получить указания о форме молекул. Затем, пока некоторые физики сокрушались, что «нет надежды», был изобретен электронный микроскоп. В нем вместо света через исследуемый тонкий образец проходит пучок электронов, который затем фокусируется электрическими и магнитными полями, образуя на фотопленке сильно увеличенное изображение. Длины электронных воля настолько меньше световых[132]

, что позволяют различать даже «молекулы».

Поэтому теперь мы можем «рассматривать» вирусы с огромным увеличением и даже удается сфотографировать большие молекулы. Полученные контуры молекул хорошо согласуются с теми умозрительными картинами, которые рисовали химики, исходя из хитроумных рассуждений о химических свойствах этих молекул.

В последнее время созданы еще более «тонкие» методы. В конце нашей книги мы приводим фотографию отдельных атомов металла на острие булавочной головки. Почему мы не показываем ее сейчас? Да потому, что прежде необходимо познакомиться с атомной физикой, ее методами и подходами. Тогда вы поймете, насколько правильна эта фотография. Мы будем говорить об электронах сверхвысоких энергий, которыми сейчас прощупывают структуру атомных ядер, исследуя их теневое изображение.

За последнее 100 лет молекулы из мельчайших гипотетических кирпичиков теории превратились в такую реальность, что мы пытаемся даже разглядеть их форму. Большинство характеристик молекул — скорость, их число, масса, размер — были получены еще в прошлом веке на основе кинетической теории газов Теория порождала измерения, и измерения подтверждали теорию. А теперь мы оставим заботу о том, как увидеть молекулы, и посмотрим, что можно получить из простых экспериментов.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки