Примеры вычисления энергии. Вычисление потенциальной энергии
Пользуясь работой, равной произведению сила на расстояние, мы легко можем подсчитать изменение потенциальной энергии. При поднятии груза прирост его потенциальной энергии равен весу, т. е. притяжению Земли, умноженному на высоту подъема. Если тело движется по наклонному пути, мы пользуемся также произведением вес на высоту подъема по вертикали. Земля не тянет груз вбок, так что боковое движение не требует совершения работы.
Если при движении колес по шероховатой дороге или подъеме по лестнице сказывается трение, то какая-то работа совершается и при горизонтальном движении; при этом энергия переходит в нагревание дороги, обода и ботинок. Поскольку эта теплота не запасается и не может быть использована на обратном пути, мы не можем считать ее потенциальной энергией. Поэтому при вычислении полезной потенциальной энергии, того запаса энергии, который можно использовать для движения механизмов, мы не учитываем горизонтального движения (нулевой уровень потенциальной энергии см. стр. 426).
Пример А.
1. Мешок с зерном весом 20 кГ поднят с пола на высоту 10 м
ПРИРОСТ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ = ВЕС ∙ Δ ВЫСОТЫ = (20 кГ)∙(10) м = 200 кГм
Если мы хотим выразить этот прирост в «хороших» единицах, которыми нужно пользоваться во всех случаях, когда есть движение, то вес также необходимо выражать в таких «хороших» единицах, как
ВЕС = ПРИТЯЖЕНИЕ ЗЕМЛЕЙ 20 кГ = (20 кГ)∙(9,8 ньютон/кГ) = (20)∙(9,8) ньютон = 196 ньютон.
ПРИРОСТ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ = ВЕС ∙ Δ ВЫСОТЫ =
= (20)∙(9,8 ньютон)∙(10) м = 1960 ньютон∙м = 1960 дж.
2. Груз массой 20 кг поднят на высоту 10 м по кривому пути при помощи блоков и веревок.
Прирост потенциальной энергии силы тяжести по-прежнему составит (196 ньютон)∙(10 м). Это и есть та потенциальная энергия, которую потерял бы груз, если бы он упал вертикально на пол. Именно она и приобретается при поднятии груза на 10 м независимо от того, насколько груз продвинулся бы вбок. Проверим это на следующем простом примере.
Предположим, что груз втаскивается наверх по наклонной плоскости, причем на пути длиной 50 м он поднимается на высоту 10 м. В этом случае нам известна сила, с которой нужно тащить груз вдоль плоскости без трения. Она задается отношением
СИЛА F
/ ВЕС W = ВЫСОТА ПОДЪЕМА / ДЛИНА ПЛОСКОСТИ,F
/196 ньютон = 10/50, F = 196/5 = 39,2 ньютонНо человек тянет груз с силой 196/5 ньютон вместо полных 196 и должен тащить его 50 м, а не 10 м (или если он стоит на вершине, то должен вытянуть 50 м веревки вместо 10). Следовательно, его затраты энергии, измеряемые произведением
При наличии трения человек должен прикладывать большую силу, чем 39,2 ньютон, однако она не имеет ничего общего с приростом потенциальной энергии. Дополнительная сила используется для преодоления трения расходуется на теплоту, не увеличивая причем дополнительная энергия потенциальной энергии груза.