Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью

Нетрудно нарушить этот закон. Подвиньте толстяка поближе к краю, тогда качели будут ускоряться и худенький мальчик взлетит вверх, а толстяк стукнется о землю. Если рассматривать вес мальчиков как силу на входе и на выходе, равенство (работа на входе) = (работа на выходе) уже не будет соблюдено — толстяк вносит больше, чем забирает худенький мальчик. Но нам нет нужды отказываться от закона сохранения энергии. Можно придумать другую форму, кинетическую энергию, Eкин, и вычислять ее по правилу Eкин = 1/2 mv2, полученному из комбинирования F = ma и определения (paбота) = Fs

. В начале XIX века сохранение энергии означало, что сумма

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ изменение которой равно (сила)∙(расстояние) + КИНЕТИЧЕСКАЯ ЭНЕРГИЯ величина которой равна 1/2 mv2

постоянна (для идеальных механических систем). Этот закон полезен для решения задач физики и техники. На деле он состоит из II и III законов Ньютона и предположения, что силы складываются как векторы. Поэтому он основан на эксперименте в той же степени, что и II закон: F = ma. Это выявляет важную характеристику таких механических систем, о которой было известно уже в давние времена: изменение энергии при любых движениях не зависит от выбранного пути. Пусть, например, груз от двери сарая А переносится в дальний угол его чердака В. Как бы мы ни перемещали его:

— сначала подняли вверх, а потом переместили по горизонтали,

— сначала по горизонтали, а потом вверх,

— или вверх по наклонной плоскости,

— или по какой-то причудливой кривой (с помощью блоков),

— или даже сначала подняли над крышей, а затем опустили на чердак,

прирост потенциальной энергии (Eпот) будет тем же самым.

Чтобы показать, как это следует из закона сохранения энергии, рассмотрим перемещение из А в В по двум путям, причем будем начинать и кончать состоянием покоя, трением пренебрежем.

Перенесем груз из А в В по пути I, а затем назад по пути II. Возвратившись в начальную точку А, мы пришли к той же потенциальной энергии. Следовательно, затраты на путях I и II одинаковы. В противном случае мы могли бы создать вечный двигатель, перемещая груз вверх по одному пути, а вниз — по другому и получая при каждом цикле прирост энергии.

Поверив в сохранение энергии, мы видим, что правило Галилея о наклонной плоскости очевидно; каков бы ни был наклон, масса М, сталкиваемая с высоты h, теряет потенциальную энергию, равную Mgh, и приобретает кинетическую энергию, равную 1

/2 mv2. Если нет потерь на трение, то эти два изменения должны быть сбалансированы, Mgh = 1/2 mv2. Тогда скорость v = √(2gh) — одна и та же при любом наклоне высотой h, как отвесном, так и отлогом, как прямом, так и искривленном. Так что опыт Галилея был фундаментальной проверкой закона сохранения энергии.

Если математикам «дать» Солнце и планету при некотором начальном условии, то они смогут предсказать орбиту планеты. Один из наиболее простых способов — это написать уравнение, исходя из того, что сумма (кинетическая энергия) + (потенциальная энергия) (в изменяющемся гравитационном поле Солнца) вдоль орбиты остается постоянной. В комбинации с уравнением для другой сохраняющейся величины (например, момента количества движения) это приведет к уравнению для орбиты, т. е. к эллипсу[202].

Хотя закон сохранения энергии полезен, до сих пор он вряд ли был всеобщим. Включение же теплоты, химической энергии и др. в одну грандиозную схему привело к перерастанию его в важнейший закон.


Теплота как форма энергии

Лукреций (~ 80 г. до н. э.) так описывал взгляды греческих философов, живших за несколько веков до него[203]:

«… телам изначальным, конечно,Вовсе покоя нигде не дано в пустоте необъятной.Наоборот: непрерывно гонимые разным движеньем,Частью далеко они отлетают, столкнувшись друг с другом,Частью ж расходятся врозь на короткие лишь расстоянья.Тех, у которых тесней их взаимная сплоченность, мало,И на ничтожные лишь расстоянья прядая порознь,Сложностью самых фигур своих спутанны будучи цепко,Мощные корни камней и тела образуют железаСтойкого, так же, как все остальное подобного рода.Прочие в малом числе, в пустоте необъятной витая,Прядают прочь далеко и далеко назад отбегаютНа промежуток большой. Из них составляется редкийВоздух…»


Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки