Задача 7.
Вот как закон Авогадро используется в химии. Если смешать равные объемы водорода (Н) и хлора (Сl), то вспышка света вызовет химическую реакцию (взрыв), в которой они, соединяясь, образуют новый газ — хлористый водород HCl (в водном растворе — соляная кислота). (Если первоначальные объемы не равны, то избыток одного из газов остается неиспользованным.)
Поэтому 1 л водорода и 1 л хлора дают 2 л смеси, а после взрыва — 2 л соединения хлористого водорода (когда газ остынет до первоначальной температуры).
а) Если 1 л водорода содержит
б) Сколько образуется молекул соединения?
в) Разделив общее число исходных молекул на число молекул соединения, определите, сколько исходных молекул расходуется на образование одной молекулы хлористого водорода?
г) Что можно заключить о числе атомов водорода в молекуле газа водорода?
д) Дайте обоснование вашего ответа.
Задача 8.
Не будем измерять удельную теплоемкость гелия, а, подобно фокуснику, «вытащим» ее из нашей «теоретической шляпы». Пусть тепловая энергия гелия равна кинетической энергии его молекул, так что:
1) Из PV
= 1/3… следует, что полная кинетическая энергия всех2) Предположим, что вся эта кинетическая энергия есть теплота, поглощенная газом при нагревании его от абсолютного нуля до той температуры
МАССА ∙ Δ (ТЕМПЕРАТУРЫ) ∙ УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ
Комбинируя это с полученным выше результатом, найдите выражение для удельной теплоемкости через давление
3) Примените это к гелию, используя следующие данные: 4 кг гелия при температуре таяния льда и давлении 1 атм (примерно 100 000 ньютон/м2
) занимают 22,4 м3. Вычислите удельную теплоемкость гелия. Не забудьте, что вычисленная вами в п. 1 кинетическая энергия выражена в (Прежде чем ответить на вопрос, выразите обе величины в одинаковых единицах (1 Кал = 4200 дж). (
Удельная теплоемкость газов
Сравните ваше решение
Найдем теперь аналогичные данные для водорода. Если вместо 4 кг гелия мы возьмем 2 кг водорода в этом же объеме, то получим, что удельная теплоемкость должна быть около 1,5. Экспериментальное значение совершенно другое — около 2,5. Таким образом, наша теория продержалась недолго. Это расхождение оказывается полезным для новой теории. Получаемое из статистической механики равномерное распределение энергии в общем случае касается не только кинетической энергии движения. Оно утверждает только, что «средняя кинетическая энергия у всех молекул одинакова». Оно поровну наделяет энергией