Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью

Измерительные линейки мы привыкли считать неизменными стандартами, прикладывая которые можно измерить длины или указать направления. Правда, это относится к идеализированному метру, который не коробится от сырости и не расширяется при изменениях температуры, но и эти слабости не могут поколебать доверия к его свойствам. Его длина была неизменной инвариантной. То же относится и к интервалу времени между «тиканием» хороших часов. (Если вы не доверяете маятниковым часам, возьмите настольные атомные часы.) Но теория относительности предупреждает, что измерительные линейки не обладают неизменной длиной. Вся идея твердого тела — безобидное и полезное представление физики XIX века — теперь только вводит в заблуждение. То же самое произошло и с идеей абсолютного времени, текущего независимо от пространства. Вместо этого оказалось, что движение влияет на наши измерения и только скорость свети неизменна. С более общей точки зрения скорость света с — масштабный фактор нашего выбора единиц в сложном пространстве-времени, которое для разных наблюдателей течет по-разному.


Изменение массы

Если длина и время изменяются, то должна изменяться также и масса. Мысленный эксперимент, предложенный Толменом, поможет нам выяснить, какой должна быть масса по измерению движущегося наблюдателя. Будем считать, что закон сохранения импульса справедлив в любой (инерциальной) системе — мы должны опереться на какие-то правила, иначе не миновать произвола.

Пусть снова наблюдатели ε и ε' движутся в своих лабораториях с относительной скоростью v в направлении оси

X. Допустим, они сделали два платиновых кубика, каждый из которых равен стандартному килограмму и которые совершенно одинаковы. Они могут, если угодно, даже пересчитать там все атомы. Каждый из наблюдателей помещает этот кубик на идеально гладкий стол (фиг. 156).



Пролетая мимо друг друга, они прицепляют в этот момент к кубикам длинную легкую пружину, направленную вдоль оси Y. Пружина дергает эти кубики, затем ее удаляют, а кубики приобретают некоторый импульс в направлении оси Y. После этого каждый экспериментатор измеряет компоненту скорости своего кубика вдоль оси Y и вычисляет его импульс. Затем записи сравниваются: каждый записал для своего кубика скорость 3 м/сек. «Раз скорости равны и противоположны, — заключают они, — то должны быть равны и противоположны импульсы». Им нравится принимать в качестве рабочего правила третий закон Ньютона. Но когда ε наблюдал, как работает ε', он видел, что тот пользуется часами, которые идут медленнее (хотя он согласен с метром, которым пользуется ε' для измерений вдоль оси Y). Поэтому ε видел, что, когда ε

' измерил за 1 сек 3 м, на самом деле по часам ε требовалось более 1 сек. Следовательно, будь у него верные часы, ε' намерил бы скорость меньше 3 м/сек в 1/√(1 — (v2/c2)) раз. Доверяя третьему закону Ньютона и закону сохранения импульса, ε пришел бы к выводу, что раз его кубик приобрел импульс 1 кг∙3 м/сек, то масса другого кубика, двигавшегося по его расчету медленнее, должна быть больше[259] в 1/√(1 — (v2/
c2)) раз. Но в то время как кубик после рывка пружины движется поперек стола, ε видит, что и кубик, и стол, и все остальное несется в направлении оси X с громадной скоростью v. Обладатель кубика ε', который покоится относительно стола, говорит, что масса его кубика 1 кг. Но наблюдателю ε', проносящемуся мимо ε', кажется, что масса этого кубика больше в 1/√(1 — (v2/c2)) раз.

Этот результат применим к любым движущимся массам. Для разных наблюдателей масса имеет разное значение. Посадите наблюдателя на движущееся тело, и он измерит так называемую «массу покоя», которая одинакова у всех электронов, у всех протонов, у каждого литра воды и т. п. Но, пролетая мимо тела или видя, как тело проносится мимо него, наблюдатель обнаружит, что тело имеет большую массу: m

= m0/√(1 — (v2/c2)). Для обычных скоростей множитель 1/√(1 — (v2/c2)) практически не дает никакого эффекта. Однако ионы, ускоряемые в циклотроне, значительно увеличивают свою массу. На свой возросший путь они тратят теперь слишком много времени, и если не принять особых мер, то они будут запаздывать все больше и больше! Электроны из ускорителей на миллиарды электрон-вольт настолько массивны, что вполне могут сойти за протоны.



Фиг. 157.Упругое соударение релятивистских масс.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки