Опыт 1.
Мы уже знаем, что каждый угол куба образуется пересечением трех его граней. Возьмите три квадратных куска картона, положите их на стол, затем попробуйте приподнять их, ухватившись за то место, где встречаются все три угла квадратов.
Квадратные куски картона образуют при этом трехгранный угол куба. Поэтому мы можем сделать правильный многогранник, каждый угол которого будет образован пересечением трех квадратных граней. (Нам понадобится еще три квадратных куска картона, чтобы сделать весь куб). Можем ли мы сделать иной правильный многогранник с одной или двумя, или четырьмя квадратными гранями, пересекающимися между собой?
Из
С
С
С
Таким образом,
Опыт 2.
Попробуйте теперь образовать многогранникПопробуйте выполнить аналогичную задачу с шестиугольниками и другими многоугольниками. Попробуйте построить правильные многогранники с помощью треугольников.
Фиг. 77.
б
— правильные.Казалось, что найдено чудесное объяснение того, почему существует только шесть планет. Строя систему планет, Кеплер начал со сферы для земной орбиты, построил вокруг нее додекаэдр так, чтобы его грани соприкасались со сферой, затем описал вокруг этого додекаэдра другую сферу так, чтобы она проходила через его вершины; на этой сфере должна была лежать орбита Марса; вокруг этой сферы он построил тетраэдр, затем сферу для Юпитера, затем куб, затем сферу для Сатурна. Внутри земной сферы он поместил еще два многогранника, разделенные сферами, чтобы получить таким образом орбиты Венеры и Меркурия. Относительные радиусы сфер, вычисленные на основе геометрии, находились в соответствии с известными в то время относительными радиусами орбит планет, и Кеплер был в восторге: «