Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Но если мы сможем избежать операции фотографирования и будем увеличивать изображение оптическими способами, к чему имеется полная возможность (никто не мешает увеличивать число линз), то мы быстро убедимся, что и в этом случае большое увеличение не имеет смысла. Предел полезному увеличению любого прибора дает волновой аспект электромагнитного поля. Рассматриваем ли мы предмет через увеличительное стеклышко, просто глазом, с помощью микроскопа или телескопа — все равно во всех этих случаях световая волна, идущая от светящейся точки, должна пройти через отверстие. Но при этом возникает явление дифракции, т. е. отклонение светового луча от прямого пути. Луч в той или иной степени «заглядывает за угол». Поэтому изображение точки никогда не будет точкой, а будет пятнышком. И как ни стараться, невозможно сделать размер этого пятна меньшим длины волны света.

Существенно уметь прикинуть, при каких условиях ход электромагнитной волны заметно отклоняется от прямолинейного пути.

Если обозначить через х линейное отклонение от прямого пути, наблюдаемое на расстоянии f

от источника излучения, а размер препятствия или отверстия, которое находится на пути следования луча, равен а, то имеет место следующее соотношение:

x = λf

/a

Здесь λ — длина волны. Из этого уравнения следует, что дифракцию можно наблюдать и от мельчайших частиц, и от небесных тел. Все зависит от того, о волнах какой длины и о каких расстояниях идет речь. То же самое можно сказать и об отверстиях. Вовсе не обязательно иметь дело с крошечными отверстиями, чтобы наблюдать дифракцию. Скажем, отверстие, в которое пролезет теннисный мяч, позволит наблюдать дифракционные явления, но, правда, лишь на расстояниях порядка сотен метров.

Простенькое уравнение, которое мы привели, позволяет судить о предельных возможностях микроскопов и телескопов.

Микроскоп не разрешает нам разглядеть детали предмета с большей точностью, чем микрометр. Ну, а детали миллиметрового размера мы видим невооруженным глазом. Отсюда ясно, что, пользуясь оптическим микроскопом, нет смысла добиваться увеличения больше чем в тысячу раз.

Но, это ограничение касается оптического микроскопа. Вот если бы удалось сконструировать микроскоп, который мог работать не со световыми лучами, а с какими-либо другими, у которых длина волны была бы меньшей, то полезное увеличение микроскопа возросло бы. Такой микроскоп давно создан и работает во многих научных лабораториях. Это электронный микроскоп. Длина волны электронов может быть выбрана очень маленькой (см. с. 112).

С помощью электронного микроскопа удается видеть детали строения вещества, измеряемые десятимиллионными долями миллиметра. Биологи увидели молекулы ДНК — те самые длинные молекулы, с помощью которых наследственные черты передаются от родителей их потомству. Видны молекулы белков, можно разобраться в структуре мембран клеток, увидеть детали строения мышечных волокон. Я привожу лишь одну рекордную фотографию (рис. 2.4), которая с увеличением большим, чем в 3 миллиона, показывает кристаллическую решетку минерала пирофиллита. Видно расстояние между плоскостями кристалла, равное 4,45 А°.



Предел возможностям электронного микроскопа связан не с его разрешающей способностью — мы можем без труда уменьшить длину волны электронов. Все дело в контрастности изображения: изучаемую молекулу надо положить на подложку, а она ведь сама состоит из молекул. На фоне молекул подложки трудно разглядеть ту молекулу, которая нас интересует.

Электронный микроскоп — сложный и дорогой прибор. Обычно его «рост» — порядка полутора метров. Электроны разгоняются высоким напряжением. А за счет чего создается увеличение? Принцип тот же, что и у оптического микроскопа. Увеличение создается линзами. Но, разумеется, эти «линзы» совсем не похожи на линзы обычного микроскопа. Электроны фокусируются электрическими полями, приложенными к металлическим пластинам с отверстиями, а также магнитными полями, созданными катушками.

Существует множество различных технических приемов, помогающих создать изображение. При помощи микротомов изготовляются тончайшие срезы, рассматриваемые на просвет, молекулы на подложке оттеняются путем осаждения на них паров металлов. Можно также получить «реплику» образца, т. е. покрыть его тончайшей пленкой прозрачного материала, а затем стравить сам объект.

Электронная микроскопия — большой и важный раздел физики, ей стоило бы посвятить отдельную главу. Но малый объем сочинения гонит меня вперед.

Мысли о том, что при помощи выпуклых стекол можно рассматривать удаленные предметы, высказывались еще в XVI веке. Тем не менее мы не ошибемся, если припишем открытие телескопа (вернее — подзорной трубы) великому Галилею. Она была построена в июле 1609 г., и уже через год Галилей опубликовал свои первые наблюдения звездного неба.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука