Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Интерференционный метод широко применяется для измерения малых расстояний или малых изменений расстояний. Он позволяет заметить изменения толщины, меньшие сотых долей длины световой волны. В интерференционных измерениях неровностей на поверхности кристалла удается достигнуть точности порядка 10-7 см.

Широко распространен этот метод в оптической промышленности. Если, скажем, нужно проверить качество поверхности стеклянной пластинки, то это делается рассмотрением полос равной толщины воздушного клина, создаваемого испытуемой пластинкой с идеально плоской поверхностью. Если прижать эти две пластинки с одного края, то образуется воздушный клин. Если обе поверхности плоские, то линии равной толщины будут параллельными прямыми.

Представим себе, что на испытуемой пластинке имеется впадина или бугор. Тогда линии равной толщины искривятся и будут обходить дефектное место. При изменении угла падения света полосы движутся в ту или другую сторону в зависимости от того, бугром или впадиной является дефект. На рис. 2.6 показано, как выглядит поле микроскопа в этих случаях. Оба рисунка соответствуют дефектным образцам. У первого дефект расположен справа у самого края, а у второго — слева.




Точные измерения показателей преломления вещества могут быть проделаны при помощи интерференционных рефрактометров. В этих приборах наблюдается интерференция между двумя лучами, которые по возможности отдалены друг, от друга.

Положим, что на пути одного из лучей установлено тело длиной l и с показателем преломления n. Если показатель преломления среды есть n0, то оптическая разность хода изменится на Δ = l∙(nn

0). Два луча сводят в одну, точку при помощи фокусирующей линзы. Какую же картину будем мы наблюдать в зрительной трубе? Систему светлых и темных полос. Но это не полосы равной толщины, которые видны невооруженным глазом. Система полос, возникающая, в рефрактометре, имеет другое происхождение. Ведь исходный пучок света не идеально параллельному, а слегка расходящийся. Значит, падать на пластинку лучи, составляющие конус, будут под слегка разными углами.

Интерференционные события будут проходить одинаково у лучей одинакового наклона. Они и соберутся в одном месте фокальной плоскости зрительной трубы. Если разность хода между расщепленными частями пучка будет меняться, то полосы придут в движение. При изменении разности хода на величину Δ через окуляр трубы пройдут Δ/λ, полос.

Точность метода очень велика, ибо смещение в 0,1 полосы улавливается без труда. При таком смещении Δ = 0,1∙λ = 0,5∙10-5 см, что на длине

l = 10 см позволит зафиксировать изменение показателя преломления на 0,5∙10-6.

Необходимо рассказать теперь об интерферометре другого типа, не использующего явление преломления. Это интерферометр, созданный американским физиком Альбертом Майкельсоном (1852–1931). Трудно переоценить ту роль, которую он сыграл в истории физики (я рискну даже на более сильное утверждение: в истории человеческой мысли). С помощью этого интерферометра был впервые установлен факт исключительной важности: скорость света в направлениях вдоль и поперек земной орбиты одинакова. Это значит, что скорость света не складывается со скоростью движения лампы, дающей световую вспышку, по тем правилам, по которым складывается скорость пули со скоростью сдвижения стрелка с ружьем. Открытие этого замечательного факта привело к становлению теории относительности, к коренному пересмотру смысла основных научных понятий — длины, времени, массы, энергии. Но об этом речь у нас впереди. А об интерферометре Мендельсона нам стоит поговорить сейчас, так как его значимость определяется не только местом, занимаемым в истории физики, но и тем, что до сего времени простые принципы, лежащие в основе его конструкции, используются для измерения длин и расстояний.

В этом приборе параллельный пучок монохроматического света падает на плоскопараллельную пластинку P1 (рис. 2.7), покрытую со штрихованной стороны полу прозрачным слоем серебра. Эта пластинка поставлена под углом 45° к падающему от источника лучу и делит его на два, один из которых идет параллельно падающему лучу (к зеркалу M1), а другой — перпендикулярно (к зеркалу М

2).



Разделенные лучи падают на оба зеркала перпендикулярно и возвращаются в те самые места полупрозрачной пластинки, из которых они вышли. Каждый луч, вернувшийся от зеркала, повторно расщепляется на пластинке. Часть света возвращается в источник, а другая часть поступает в зрительную трубу. На рисунке видно, что луч, идущий от зеркала, стоящего напротив трубы, три раза проходит через стеклянную пластинку с полупрозрачным слоем. Поэтому для обеспечения равенства оптических путей луч, идущий от зеркала М1, пропускается через компенсационную пластинку P2, идентичную первой, но без полупрозрачного слоя.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука