Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Проверка справедливости только что приведенного рассуждения, которое, кстати говоря, в свое время воспринималось как игра понятиями, вполне прямолинейна. Надо снять с одного и того же вещества рентгенограмму, электронограмму и нейтронограмму. Подогнав скорости частиц таким образом, чтобы длины волн были одинаковы во всех случаях, мы должны получить тождественные (в отношении радиусов колец) дебаеграммы. Так оно и оказывается.

В 1927 г. случайно осуществилась первая проверка формулы де Бройля. Американские физики Дэвиссон и Джермер производили опыты по рассеянию электронов на поверхности металлов, и при работе с прибором им случилось накалить объект. Объект был поликристаллическим, а после нагрева перекристаллизовался, теперь лучи рассеивались монокристаллом. Полученная картина была столь похожа на соответствующие рентгенограммы, что не было никакого сомнения в том, что электроны обладают способностью дифрагировать, как и рентгеновские лучи.

Достаточно скоро наблюдение электронной дифракции превратилось в метод исследования строения вещества, который во многих случаях оказывался более пригодным, чем рентгеноструктурный анализ. Основная область применения электронографии — это изучение структуры тонких пленок. Принципы ничем не отличаются от тех, которые мы обсуждали в гл. 3. Различие состоит в том, что электронные лучи рассеиваются электронами и ядрами, в то время как рентгеновские лучи рассеиваются только электронами.

Так как длина волны частицы обратно пропорциональна массе, то понятно, что дифракцию молекул наблюдать трудно. Во всяком случае до сих пор этого, сделано не было. Дифракцию протонов наблюдать можно, но она не представляет какого-либо интереса: для исследования объемной структуры протоны не годятся из-за малой проникающей способности, а для изучения поверхности лучше применять дифракцию электронов — она дает несравненно более богатую информацию о структуре.

Иначе обстоит дело с нейтронами. Исследование дифракции этих частиц стало предметом занятия многих ученых. Эта область науки получила название нейтронографии.

Получить нейтронограмму технически много труднее, чем рентгенограмму. Прежде всего, достаточно сильный пучок нейтронов подходящей длины волны (а длина волны регулируется скоростью нейтронов) можно создать лишь выводом этих частиц через специальный канал в атомном реакторе. Вторая трудность состоит в том, что рассеяние нейтронов невелико; они ведь легко проходят через вещество, не сталкиваясь с ядрами его атомов. Поэтому нужно работать с крупными кристаллами; размером порядка сантиметра. А такие кристаллы не так легко получить. И, наконец, третье обстоятельство: нейтроны не оставляют следа на фотопластинке, а в ионизационных приборах дают о себе знать лишь косвенно. Несколько слов о том, как считают нейтроны, мы скажем ниже.

Так почему все-таки исследователи занимаются нейтронографией? Дело заключается в том, что нейтроны, в отличие от рентгеновских лучей, не рассеиваются электродами, а отклоняются от своего пути при встречах с атомными ядрами. Можно привести много примеров веществ, атомы которых по числу электронов отличаются незначительно, а по свойствам ядер — резко. В подобных случаях рентгеновские лучи не различат атомов, а нейтронография приведет к успеху. А, пожалуй, самое главное обстоятельство — это то, что нейтроны сильно рассеиваются ядрами атомов водорода в то время как рентгеновские лучи способны установить расположение атомов водорода лишь с трудом: ведь у атома водорода всего лишь один электрон. А знать расположение этого атома очень важно. В огромном числе органических и биологических систем атом водорода связывает между собой части одной молекулы или соседние молекулы. Эта особая связь так и называется «водородной». Также вне конкуренции находится возможность нейтронографии отличать атомные ядра, обладающие различными магнитными свойствами. Всех этих причин достаточно для того, чтобы сделать нейтронографию важным методом исследования строения вещества.


ПРИНЦИП ГЕЙЗЕНБЕРГА


С тем, что свет и частицы обладают одновременно и волновыми, и корпускулярными свойствами, многие физики долгое время не могли примириться. Им казалось, что в этом дуализме содержится нечто, противоречащее теории познания. В особенности нетерпимым казался этим ученым принцип Гейзенберга.

Это важнейшее положение физики микромира устанавливает границы пригодности корпускулярного аспекта любых явлений, связанных с движением частиц вещества. Принцип Гейзенберга записывается в следующей форме;

Δx∙Δv > h/m

Здесь Δx и Δv — «размытость» нашего знания соответственно координаты и скорости движения (в направлении той же оси координат) сгустка материи, который мы рассматриваем в корпускулярном аспекте. Короче, Δx и Δv — это неопределенность в знании координаты и скорости частицы.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное