Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Необходимо подчеркнуть, что речь идет не о технических трудностях измерения. Приведенное соотношение связывает неопределенности, которые не удастся устранить в самом идеальном эксперименте. Сейчас лишь исторический интерес представляют различного рода схемы, которые предлагались для абсолютно точного измерения траектории и скорости движения частиц. Внимательным рассмотрением всегда можно было обнаружить принципиальный дефект схемы.

Попытаемся хотя бы несколькими словами пояснить, почему эксперимент не может дать большей точности, чем позволяет принцип Гейзенберга. Положим, что речь идет об определении положения частицы в пространстве. Чтобы узнать, где она находится, ее надо осветить. Как уже говорилось ранее, возможности различения деталей определяются длиной волны используемого излучения. Чем длина волны меньше, тем лучше. Но, уменьшая длину волны, мы увеличиваем частоту света, а значит, увеличиваем энергию фотона. Удар, который испытает рассматриваемая частица, лишит нас возможности вынести суждение о той скорости, которую она имела при встрече с фотоном.

Или еще один классический пример. Мы ставим на пути электрона узкую щель. Пролетев через щель, электрон падает на экран. Видна вспышка. Таким образом с точностью до ширины щели установлено местоположение электрона в момент, когда он проходил через отверстие. Погонимся за точностью. Для этой цели будем уменьшать размеры щели. Но тогда волновые свойства электрона начнут сказываться более резко (см. с. 49). Электрон может все дальше и дальше отклоняться от прямого пути. А это значит, что мы все в большей степени будем терять сведения о компоненте его скорости в направлении плоскости, в которой проделана щель.

Таких примеров можно придумать десятки, можно рассмотреть их количественно (что и делали физики в 30-х годах), и каждый раз будем приходить к приведенной выше формуле.

Обсудим оценки Δx и Δv, которые можно сделать в отношении частиц разной массы, пользуясь неравенством Гейзенберга.

Допустим, речь идет об электроне, принадлежащем атому. Можно поставить такой опыт, который установил бы, в каком месте находится электрон в данное мгновение? Поскольку размеры атома порядка 10-8 см, то это значит, что желательна точность, скажем, 10-9 см. Что же, в принципе (только в принципе) такой опыт осуществим. Но оценим с помощью неравенства потерю информации об этом электроне. Для электрона h

/m примерно равно 7 см2/с, и для него принцип Гейзенберга запишется так: Δx∙Δv > 7. Итак, Δ
v > 7∙109 см/с, что совершенно бессмысленно, т. е. о скорости электрона ничего нельзя сказать.

Ну, а если попытаться узнать, скорость атомного электрона поточнее? И для этой цели можно придумать принципиально осуществимый эксперимент. Но тогда будет полностью потеряно знание о месте, где электрон находится.

Неравенство, примененное к атомному электрону, показывает, что корпускулярный аспект в этом случае не работает. Понятие траектории электрона лишено смысла, о путях перехода электрона с одного энергетического уровня на другой также сказать ничего нельзя.

Картина меняется в том случае, когда мы интересуемся движением электрона в ионизационных камерах. Трек, оставленный электроном, может быть зримым. Значит, есть у него траектория? Имеется! А как же связать это с предыдущим расчетом? И не надо связывать. Теперь все рассуждения надо провести заново. Толщина трека порядка 10-2

см. Следовательно, неопределенность в значении скорости даже для медленного электрона, который пролетает через камеру со скоростью около 1 км/с, практически пренебрежима по сравнению с этой величиной — она равна 7 м/с.

Эти числовые примеры показывают нам, что корпускулярный аспект начинает исчезать по мере того, как мы «приглядываемся» — стараемся разглядеть порцию материи подетальней.

О протонах и нейтронах можно весьма часто говорить как о частицах. Но если речь идет об их поведении внутри атомного ядра, которое имеет размер 10-13 см, то корпускулярный аспект не проглядывается.

Нетрудно также прикинуть, что в крупной молекуле с молекулярной массой порядка миллиона можно спокойно говорить как о горошинке. Такая молекула ведет себя как «честная» частица. Можно даже начертить траекторию ее теплового хаотического движения.

Давно прошло время, когда волново-корпускулярный дуализм воспринимался как нечто странное, нуждающееся в глубоком истолковании. Маститые ученые, даже такие, как Эйнштейн и Бор, яростно спорили о том, как надо трактовать столь «странное» поведение электронов и других частиц. В настоящее время подавляющее большинство естествоиспытателей не видит ничего особенного в использовании двух аспектов при описании различных явлений, в которых принимают участие электроны, ядра или фотоны.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное