Но в химии закон сохранения массы работает. Сумма масс молекул
Ввиду важности сказанного: (очень часто думают, что выделение ядерной энергии — это какой-то особый процесс; а думать так не следует) я приведу аналогичное рассуждение для случая, когда частица
В случае химической реакции не обнаруживается различия в массе молекулы
Сам по себе тот факт, что некая реакция дает тепло, ёще не означает, что она будет иметь практическое значение. Условие нестабильности системы, то обстоятельство, что исходное вещество находится на более высоком энергетическом уровне, чем продукты реакции, является, как говорят математики, условием необходимым, но не достаточным.
Мы подробно обсудили во 2-й книге, какие требования должны быть выполнены, чтобы вещество послужило в качестве химического топлива. Нам остается лишь продолжить аналогию между химическими и ядерными реакциями.
Итак, напомним: мало того, чтобы химическая реакция давала тепло, нужно, чтобы это тепло «поджигало» соседние молекулы.
Поэтому ясно, что, научившись сталкивать между собой атомные ядра с выделением огромных количеств энергии, физики ни в малейшей степени не подошли еще к созданию ядерного горючего.
В превращении с альфа-частицами бериллий или литий не ведут себя, как горючее. Они удовлетворяют первому требованию, предъявляемому к топливу: дают энергию. Литий и бериллий ведут себя так, как кусочки угля, каждый из которых надо поджигать отдельной спичкой.
Вплоть до конца 30-х годов создание ядерного горючего казалось совершенно безнадежной задачей.
Начиная с 1934 г., работами, проведенными в основном итальянским физиком Энрико Ферми (1901–1954) и его учениками, было показано, что ядра атомов большинства элементов способны поглощать медленные нейтроны и в результате такого процесса становятся радиоактивными.
В то время были известны радиоактивные превращения, состоящие в излучении электронов и альфа-частиц (эти превращения сопровождаются гамма-излучением). Но в 1938 г. рядом исследователей (интересно, что у фундаментального открытия, о котором мы сейчас поведем речь, нет одного автора) было обнаружено, что в уране, активизированном нейтронами по методу Ферми, присутствует элемент, сходный с лантаном. Объяснение могло быть лишь одно: под действием нейтронов атом урана делится на две более или менее равные части. Исключительная важность этого открытия стала сразу же ясной. Дело в том, что к тому времени была известна следующая закономерность: чем больше атомный номер, тем больше в ядре нейтронов. В уране отношение числа нейтронов к числу протонов равно примерно 1,6. А для элементов таких, как лантан, находящихся в середине таблицы Менделеева, это отношение колеблется между 1,2 и 1,4.
Но если ядро урана делится на две примерно равные половинки, то ядра продуктов деления будут неизбежно содержать «лишнее» число нейтронов. Они будут выбрасывать нейтроны. А нейтроны и играют роль «спичек».
Становится ясной возможность цепной реакции. Первый расчет этого явления был дан в 1939 г. Драматический ход событий — пуск первого ядерного реактора, создание атомной бомбы и взрыв ее в Хиросиме — изложен во всех деталях в десятках книг. У нас нет места для описания этих событий, и мы изложим современное состояние вопроса!
Нам надо пояснить, во-первых, в чем состоит ядерная цепная реакция, во-вторых, как ее сделать управляемой и, в-третьих, в каком случае она приводит к взрыву.
На рис. 5.6 показана схема одной из важнейших реакций этого типа: деление ядра урана-235.
За первым нейтроном дело не встанет — он найдется в атмосфере. Но при желании иметь более действенную «спичку» можно воспользоваться ничтожным количеством смеси радия с бериллием.