Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Начнем с характеристики солнечной энергии. К границе атмосферы на каждый квадратный метр приходит энергия средней мощности около 1,4 кВт (если пересчитать эту величину для времени, равного 1 году, то получим около 1010 Дж энергии); такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 1014

кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче — в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

До сего времени солнечная энергия используется совершенно незначительно. Рассуждали так: правда, подсчет наш дал огромную цифру, но ведь это количество энергии попадает во все места земной поверхности — и на склоны недоступных гор, и на поверхность океанов, занимающую бóльшую часть земной поверхности, и на пески безлюдных пустынь. Кроме того, совсем не так уж велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.

Энергетический голод и огромные успехи в производстве полупроводниковых фотоэлементов полностью изменили психологию энергетиков. Создано множество проектов и опытных установок, с помощью которых солнечные лучи фокусируются на тысячах (а в будущем — на миллионах и миллиардах) фотоэлементов. Техников не пугают пасмурные дни и поглощение лучей атмосферой. Нет сомнения, что прямому использованию солнечной энергии принадлежит большое будущее.

Так же точно изменилось наше отношение к голубому углю. Еще каких-нибудь двадцать лет назад говорилось: не будем возлагать больших надежд на ветер как источник энергии. Источник этот имеет тот же недостаток, что и солнечная энергия: количество энергии, приходящейся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергию ветра стоит использовать лишь в маленьких двигателях — «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах. Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя, — он может играть лишь роль вспомогательного двигателя.

Сегодня рассуждения инженеров, занятых проблемой борьбы с энергетическим голодом, совсем иные. Проекты электростанций, состоящих из тысяч регулярно расположенных «мельниц» с огромными крыльями, близки к осуществлению. Использование голубого, угля также внесет весомый вклад в книгу прихода энергии, нужной человечеству.

Даровым источником энергии является движущаяся вода — приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам. Выработка электроэнергии на ГЭС в 1969 г. в СССР составила 115,2 млрд. кВт ч, в США — 253,3 млрд. кВт. ч, но водные ресурсы используются у нас только на 10,5 %, а в США на 37 %.

Приведенные цифры выработки электроэнергии на ГЭС весьма внушительны, но все-таки, если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь — энергию рек, то пришлось бы уменьшить потребление энергии на земном шаре, даже сли бы на всех реках были построены все технически возможные гидроэлектростанции.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени, пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена ПЭС на реке Ране, а в СССР — станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытной моделью для сооружения проектируемых мощных (около 10 ГВт) приливных электростанций в заливах Белого моря.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20 °C. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником — глубинный. К.п.д. такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное