Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Как мы уже сказали, атомная электростанция относится к классу ТЭС. Отличие состоит в способе создания водяного пара, который направляется на лопатки турбины. С полным основанием можно термин «ядерный реактор» заменить словами «ядерный котел», подчеркивая этим родство, способов получения энергии.

Ядерному реактору, обычно придают форму цилиндрического здания. Стенки его должны быть очень толстыми и сделаны из материалов, поглощающих нейтроны и гамма-излучение. Реактор, который дает что-нибудь около 1000 МВт электрической энергии, в зависимости от используемого топлива, метода замедления нейтронов, способа отвода тепла может иметь различные размеры. Но во всех случаях эти размеры внушительные. Высота может достигать высоты 5—10-этажного дома, а диаметр будет порядка десяти метров.

Ядерная энергетика начала развиваться сразу же после окончания второй мировой войны. В Советском Союзе эти важнейшие исследования возглавил замечательный ученый и организатор Игорь Васильевич Курчатов.



ИГОРЬ ВАСИЛЬЕВИЧ КУРЧАТОВ (1903–1960) — видный советский физик, замечательный организатор, возглавлявший работу по разработке атомной проблемы в Советском Союзе. Начал свою научную деятельность в области физики твердого тела, создал учение о сегнетоэлектриках. В начале 30-х годов занялся исследованиями в области физики атомного, ядра. Под его руководством проведены важные работы в области изучения ядерной изомерии, резонансного поглощения нейтронов, искусственной радиоактивности.


И у нас, и за границей были испробованы самые различные конструкции. Прежде всего решается вопрос об изотопном составе используемого урана или другого ядерного горючего. Далее инженер должен решить, в каком виде он желает использовать горючее: в виде раствора солей урана или в виде твердых кусков. Твердому горючему элементу может быть придана различная форма. Можно работать с брусками, но более подходящими являются длинные стержни. Существенную роль играет геометрия расположения топливных элементов. Инженерный расчет поможет найти наиболее целесообразное расположение контрольных стержней, поглощающих нейтроны. Их перемещение (конечно, автоматическое) должно обеспечить нужное значение коэффициента размножения нейтронов.

Различие в поведении медленных (тепловых) нейтронов и быстрых нейтронов позволяет разбить типы, реакторов на две категории, а именно реакторы с замедлителем нейтронов и бридерные реакторы.

Реактор, в котором предусмотрено замедление нейтронов, может работать на природном уране. Количество замедлителя должно быть таким, чтобы не дать возможность значительному числу нейтронов поглощаться ядрами урана-238. А ведь этих ядер примерно в 140 раз больше, чем ядер урана-235. Если количество замедлителя будет малым, то нейтроны не будут успевать уменьшить свою скорость до тепловой, поглотятся ядрами урана-238 и цепная реакция не сможет продолжаться. Реактор, работающий на природном уране или уране, незначительно обогащенном ураном-235, будет все же создавать новое горючее — плутоний. Но его будет образовываться гораздо меньше, чем «сгорающих» ядер.

Пока что на атомных электростанциях используют реакторы на тепловых нейтронах. Наиболее часто применяют четыре типа реакторов: водо-водяные с обычной водой в качестве замедлителя и теплоносителя; графито-водяные с водяным теплоносителем и графитовым замедлителем; реакторы, в которых замедлителем является тяжелая вода, а теплоносителем обычная вода, и, наконец, графито-газовые реакторы.

Причина того, что специалисты в области атомной энергетики сосредоточили свое внимание на реакторах, работающих на тепловых нейтронах, видимо в том, что обогащение урана изотопом 235 является трудной задачей. Но надо помнить замечание, сделанное нами выше: используя в качестве горючего один лишь изотоп уран-235, мы лишаем себя возможности пустить в дело огромные запасы потенциального ядерного горючего.

В настоящее время намечается тенденция к переходу на ядерные реакторы другого типа, работающие на сильно обогащенном топливе и не использующие замедлителя нейтронов.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное