Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Откуда ее взять? Единственная возможность — это перевести вещество в состояние плазмы, т. е. оголить атомные ядра, а потом повысить температуру плазмы настолько, чтобы ядра начали соударяться (т. е. приблизились друг к другу на расстояние 10-13 см), презрев электрическое отталкивание.

Результат расчета крайне огорчителен. Предоставляю вам самим подсчитать величину энергии электростатического отталкивания по формуле е2/r, а затем прикинуть (для этого надо вспомнить формулу, которая связывает температуру с кинетической энергией любой частицы), каких температур надо достигнуть. Окажется, что десятков миллионов кельвинов.

Итак, надо создать высокотемпературную плазму. Есть два пути — один, по которому отряды физиков шагают уже более двух десятилетий, и другой, который лет на пятнадцать моложе.

Первый путь создания термоядерного реактора заключается в том, чтобы «загнать» плазму в «магнитную бутылку».

Если на газоразрядную трубку наложить магнитное поле, совпадающее по направлению с полем электрическим, то в такой трубке возникнет плазменный шнур. Заряженные частицы плазмы будут, как мы знаем, описывать спиральные траектории. Можно считать, что движение частиц складывается в один круговой поверхностный ток. Чем сильнее магнитное поле, тем меньше радиус плазменного шнура. Сила, которая действует на ток заряженных частиц со стороны магнитного поля, и есть причина образования шнура, не соприкасающегося со стенками газоразрядной трубки.

Таким образом, в принципе возможно создать плазму, которая «висит в воздухе».

Расчет показывает, что при начальном давлении водорода порядка 0,1 мм рт. ст., радиусе шнура 10 см и силе разрядного тока 500 000 А температура плазмы должна быть достаточной для того, чтобы начался термоядерный синтез.

На пути осуществления управляемой термоядерной реакции стоят очень большие трудности. Дело в том, что плазменный шнур по ряду причин оказывается весьма неустойчивым и расплывается через мгновения. Задача решается лишь в том случае, если удастся создать «магнитную бутыль» с «обратной связью»: требуется, чтобы случайные флуктуации, размывающие шнур, приводили к возникновению сил, которые стремились бы противодействовать размытию.

В середине 1978 г. группе американских физиков, работающих в Принстонском университете, удалось разогреть плазму до 60 млн. кельвинов. Этот успех был достигнут на разработанных в Советском Союзе «магнитных бутылях» (мы о них говорили в 3-й книге), получивших название «Токамак» (название происходит от сочетания трех слов: тороид, камера, магнит). Достигнутая температура достаточна для того, чтобы произошло слияние ядер дейтерия и трития.

Это большое достижение. Однако второй шаг еще не сделан. Не удается удержать горячую плазму достаточно длительное время. Пути технического осуществления этой задачи еще не очевидны. Создание управляемого термоядерного синтеза может оказаться задачей чрезвычайно дорогостоящей. Как бы то ни было, исследования в этой области продолжаются.

Ведутся работы по созданию управляемого термоядерного синтеза с помощью лазерного излучения. В настоящее время осуществлены лазеры с мощностью излучения около 1012 Вт, которая может быть, в виде световых импульсов длительностью 10

-9—10-10 с, подана на вещество, которое мы хотим превратить в плазму. Естественно, что при падении света этой колоссальной мощности на твердое тело вещество мгновенно ионизуется и переходит в состояние плазмы. Надо добиться такого положения дел, чтобы создалась дейтериево-тритиевая плазма, имеющая температуру 108 К, и чтобы эта температура поддерживалась до тех пор, пока не начнется цепная реакция. Для осуществления этой задачу требуется создать плазму возможно большей плотности, чтобы увеличить число столкновений ядер.

На этих соображениях основывается схема реактора, показанная на рис. 6.3.



Твердый (замороженный) шарик, состоящий из изотопов водорода, падает в сосуде, откачанном до высокого вакуума. Когда шарик проходит через центр сосуда, включаются сильные лазеры, которые превращают твердое тело в плазму. Чтобы реактор заработал, надо добиться такой ситуации, при которой за промежуток времени между началом и концом реакции была бы выделена энергия, поддерживающая температуру, необходимую для протекания реакции. Расчеты показывают, что плотность плазмы должна быть выше плотности твердого тела в 103—104 раз, т. е. в 1 см3 должно находиться что-нибудь около 1026 частиц. Это сжатие лазер способен создать.

В принципе возможно получить нужную температуру и нужную плотность. Как будут разыгрываться события дальше? Энергия слияния ядер передается нейтронам, которые освобождаются при реакции. Эти нейтроны падают на литиевую оболочку сосуда. Литий через теплообменник передает энергию турбогенератору. Часть нейтронов реагирует с литием и производит тритий, который нужен как горючий материал.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное