Читаем Физика в быту полностью

Из рисунка 8 видно, что наибольшей чувствительностью мы обладаем к частотам от тысячи до пяти тысяч герц (это верхний регистр фортепиано, начиная с третьей октавы) – здесь пороговая кривая опускается ниже всего. Обратите также внимание на ещё большее снижение порога слышимости в районе 2,5–3 тысяч герц. Видите «ямку» на кривой порога слышимости? О её происхождении мы узнаем, когда поговорим об устройстве уха человека.


Есть некая загадка в нашей повышенной чуткости к высоким частотам. Возможно, часть отгадки кроется в том, что в детском крике особо выделяются обертоны с частотами около трёх тысяч герц. Вероятно, природа постаралась, чтобы детский крик всегда был услышан на фоне помех. В этом же районе частот находится и верхняя певческая форманта, обеспечивающая «дальнобойность» голоса.

Как мы воспринимаем громкость

Интенсивность звуковой волны, а также пропорциональное ей звуковое давление – это объективные характеристики звука. Они могут быть измерены приборами. Громкость – субъективная характеристика: она показывает, как звук воспринимается человеком.

Чем больше интенсивность, тем громче звук. Но связь между громкостью звука и интенсивностью не простая пропорциональная: субъективно оцениваемая громкость возрастает гораздо медленнее, чем интенсивность звуковой волны. Вы удивитесь, но, например, интенсивность звука при громкой речи в тысячу раз больше, чем при тихом разговоре (недаром мы гораздо сильнее устаём после чтения лекции, нежели после спокойной беседы). Другими словами, когда интенсивность увеличивается в десятки раз, нам кажется, что громкость возросла на сколько-то единиц.

Придётся нам немного вспомнить математику. Функция, которая превращает произведение в сумму, – это логарифм. Грубо говоря, ухо «логарифмирует» интенсивность и воспринимает это как громкость.

Чтобы приблизить объективную характеристику звуковой волны – интенсивность – к субъективной характеристике звука – громкости, в акустике ввели понятие уровня громкости, измеряемого в децибелах (дБ). Нулевой уровень громкости (0 дБ) соответствует порогу слышимости при частоте 1000 Гц, то есть интенсивности 10-12

Вт/м2. При возрастании интенсивности в 10 раз уровень громкости увеличивается на 10 дБ, при возрастании интенсивности в 100=102 раз – на 20 дБ… при возрастании интенсивности в миллион (106) раз – на 60 дБ. Болевому порогу, то есть интенсивности в 1012 раз больше порога слышимости, соответствует уровень громкости 120 дБ.


Для тех, кто любит формулы, приведём математическое определение уровня громкости L

(в децибелах):



где I – интенсивность звука,

I0 =10-12 Вт/м2 – порог слышимости при частоте 1000 Гц.


Наше ухо уверенно различает (громче – тише) разницу в уровнях громкости в 3 дБ, что соответствует возрастанию интенсивности (и звукового давления) примерно в 2 раза.

Для ориентировки в уровнях громкости:

10 дБ – еле слышно, тихий шелест листьев

30 дБ – тиканье настенных часов

40 дБ – обычная речь

70 дБ – громкие разговоры, смех

90 дБ – громкий крик человека

100 дБ – езда на мотоцикле, визг бензопилы

120 дБ – работающий отбойный молоток на расстоянии 1 м.


Оперный певец имеет шанс петь ведущие партии, если сила его голоса позволяет ему «выдавать на-горá» 120 дБ и более, чтобы не потеряться на фоне оркестра.


Но даже при равных уровнях громкости (в децибелах) субъективное восприятие громкости звуков разных частот не совпадает: чем ближе звук к частотным границам звукового диапазона (очень низкий или очень высокий), тем хуже мы его слышим. Особенно сильно это различие проявляется при малых уровнях громкости.

Шагая по ступеням гаммы

Вы уже знаете, что высоту тона мы определяем по основной частоте f0 (даже если она объективно отсутствует в звуке): чем больше f0, тем выше звук. Но ощущение возрастания высоты тона зависит от роста частоты нелинейно. Возьмём пример. Гамма состоит из целых тонов (например, интервалы между до и ре, ре и ми) и полутонов (это звуковой интервал между чёрной и белой клавишами рояля). Разность частот для тонов до и ре первой октавы 32 Гц. Будет ли такой же разность частот между тонами ре и ми, а также между частотами до и ре второй октавы? Оказывается, нет.

Перейти на страницу:

Все книги серии Наука на пальцах

Биология для тех, кто хочет понять и простить самку богомола
Биология для тех, кто хочет понять и простить самку богомола

Биология – это наука о жизни, но об этом все знают, как знают и о том, что биология считается самой важной из наук, поскольку в числе прочих живых организмов она изучает и нас с вами. Конфуций сказал бы по этому поводу: «благородный человек изучает науку, которая изучает его самого, а ничтожный человек ею пренебрегает». И был бы тысячу раз прав.У биологии очень необычная история. С одной стороны, знания о живой природе человечество начало накапливать с момента своего появления. Первые люди уже разбирались в ботанике и зоологии – они знали, какие растения съедобны, а какие нет, и изучали повадки животных для того, чтобы на них охотиться. С другой стороны, в отдельную науку биология выделилась только в начале XIX века, когда ученые наконец-то обратили внимание на то, что у всего живого есть нечто общее, ряд общих свойств и признаков.О том, чем отличает живое от неживого, о том, как появилась жизнь и многом другом расскажет эта книга.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука