Читаем Физика в быту полностью

Нам кажется, что высота тона возрастает на одну и ту же величину, когда частота возрастает в одно и то же число раз (это похоже на восприятие нами соотношения громкостей звуков). Когда мы шагаем по ступеням гаммы (до, ре, ми), нам кажется, что высота звука с каждым шагом увеличивается на одну и ту же величину (мы так и говорим: шаг на тон выше). Между тем шаг на один тон вверх означает увеличение частоты в 1,122 раза (в современной равномерно темперированной шкале). Возрастание частоты в 1,5 раза мы воспринимаем как скачок на квинту, в 2 раза – скачок на октаву.


Используемый в европейской музыке со времён Баха равномерно темперированный строй устроен очень просто: интервал октава (то есть удвоение частоты) делится на 12 неравных ступеней – полутонов – так, что переход от одной ступени к следующей означает возрастание частоты в 12

√2 ≈1,059453 раза, а шаг на целый тон, соответственно, увеличивает частоту в (1,059453)2 ≈ 1,122 раза.


Слуховой аппарат человека очень чувствителен к изменению высоты звука: на слух человек способен различить более 600 градаций высоты тона, причём максимальная чувствительность слуха к изменению высоты звука приходится на диапазон 200–1000 Гц (средний диапазон рояля). В европейской музыке используют гораздо меньше звуковысотных градаций: так, на рояле всего 88 клавиш. К примеру, в индийской музыке используют гораздо больше звуковысотных градаций.


В начале XX века в Европе и России активно развивалось направление так называемой микротоновой музыки, в которой полутон дробился на более мелкие интервалы. С микрохроматикой (дроблением полутона) экспериментировали многие известные композиторы XX века: Пьер Булез, Бела Барток, Кшиштоф Пендерецкий, Альфред Шнитке, Эдисон Денисов, София Губайдулина и другие.


При частотах ниже 50 Гц способность различать высоту звука сильно падает. Те, кто учился музыке, знают, что опознать одни и те же звуковые интервалы в самой нижней октаве гораздо труднее, чем в средних и верхних регистрах.

При определении на слух высоты звука важную роль играет его тембр, и особенно важны первые 7–8 гармоник. Вы же помните, что разность частот гармоник воспринимается ухом как субъективный тон. Когда он совпадает с высотой основного тона, это служит мощной поддержкой слуху для распознавания высоты тона. Даже музыканту с абсолютным слухом трудно определить на слух высоту чистого тона, создаваемого эталонным генератором и не имеющего других гармоник.

Для очень высоких звуков с частотой выше пяти тысяч герц высота тона вообще не распознаётся. Причина в том, что высшие гармоники таких звуков (кроме, может, первых двух) выходят за пределы частотного звукового диапазона и не могут служить опорой для опознания основного тона. Не случайно для музыкальных инструментов основные частоты звуков не сильно превышают две тысячи герц (лишь у флейты-пикколо частоты звуков достигают четырёх тысяч герц).

В чём красота звуковых сочетаний?

Почему одновременное звучание одних звуков красиво, а других неприятно? Возьмите на рояле две ноты, отличающиеся на октаву (например, «до» первой и «до» второй октавы) или квинту («до» и «соль») – эти сочетания воспринимаются как благозвучные и нравятся даже младенцам и животным. Красиво, гармонично звучащие пары звуков называют консонансами (от французского consonance – согласие). Раздражающее, нестройное звучание называют диссонансом (что значит несогласие).

Для всех одноимённых интервалов отношение частот основных тонов пары звуков одно и то же. Так, для самого благозвучного интервала – октавы – частоты отличаются в 2 раза; для всех квинт – в 1,5 раза, то есть частота верхнего тона относится к частоте нижнего тона как 3:2, для кварт – как 4:3. Оказывается, для всех консонансных интервалов основные частоты верхнего и нижнего тонов относятся как небольшие целые числа. А вот для неблагозвучных интервалов отношение частот тонов выражается весьма большими числами – например, для звуков полутона это примерно 16:15.

Перейти на страницу:

Все книги серии Наука на пальцах

Биология для тех, кто хочет понять и простить самку богомола
Биология для тех, кто хочет понять и простить самку богомола

Биология – это наука о жизни, но об этом все знают, как знают и о том, что биология считается самой важной из наук, поскольку в числе прочих живых организмов она изучает и нас с вами. Конфуций сказал бы по этому поводу: «благородный человек изучает науку, которая изучает его самого, а ничтожный человек ею пренебрегает». И был бы тысячу раз прав.У биологии очень необычная история. С одной стороны, знания о живой природе человечество начало накапливать с момента своего появления. Первые люди уже разбирались в ботанике и зоологии – они знали, какие растения съедобны, а какие нет, и изучали повадки животных для того, чтобы на них охотиться. С другой стороны, в отдельную науку биология выделилась только в начале XIX века, когда ученые наконец-то обратили внимание на то, что у всего живого есть нечто общее, ряд общих свойств и признаков.О том, чем отличает живое от неживого, о том, как появилась жизнь и многом другом расскажет эта книга.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука