Читаем Физика в быту полностью

Глава 3

Лампы накаливания

Характеристики излучения

Эти лампы начали постепенно входить в наш быт с конца XIX – начала XX века.

Это чисто тепловой источник света, и в этом отношении лампа накаливания – близкий родственник свечи и Солнца. Чем ближе температура теплового источника к температуре поверхности Солнца, тем больше похожи спектры их излучений. Нить накала лампы (вольфрамовый волосок, закрученный в виде спирали) при пропускании через неё тока раскаляется до температуры 2600–3000 К. Спектр её излучения непрерывный, как и солнечный, но из-за более низкой температуры максимум излучения приходится не на видимую, а на инфракрасную часть спектра. И хотя практически вся потребляемая лампой электроэнергия превращается в излучение, в видимый диапазон попадает не более 5 % энергии. Это и есть КПД (коэффициент полезного действия) лампы. То есть на каждый заплаченный за электроэнергию рубль мы получаем света на 5 копеек, остальное идёт на нагревание помещения инфракрасным излучением (что в холодное время года, может, и неплохо).


Понятия КПД лампы и светоотдачи родственны. При расчёте КПД мы берём отношение полезной мощности, выделяющейся в виде света, к затраченной и получаем безразмерную величину, обычно выражаемую в процентах. При расчёте светоотдачи мы берём отношение светового потока в люменах к затраченной мощности в ваттах.


Чем больше мощность лампы, тем выше температура нити накала, из-за чего значительно возрастает доля видимого излучения в спектре, и растёт светоотдача. При температуре 3400 К уже 15 % электроэнергии превращается в свет. Но при такой высокой температуре вольфрамовая нить быстро испаряется и срок службы лампы уменьшается до нескольких часов, поэтому такие лампы в быту не используют. Сейчас в продаже имеются лампы мощностью 75, 60 и 40 Вт. Жаль, но 100-ваттные и 150-ваттные лампы сняли с производства, хотя они более энергоэффективны, чем маломощные лампы, хотя и менее долговечны.

С ростом мощности лампы её свет становится не только ярче, но и белее, потому что возрастает цветовая температура, что тоже существенно для нас. Так, цветовая температура 40-ваттной лампы 2200 К, 60-ваттной – 2680, а 100-ваттной – 2800 К.


Рис. 15. Сглаженный график спектра солнечного света на уровне земли и спектр лампы накаливания


И всё же из-за того, что температура нити накала гораздо ниже температуры поверхности Солнца (около 6000 К), свет ламп накаливания содержит гораздо больше красно-жёлтой составляющей, чем голубой и синей, в то время как спектр дневного солнечного света, прошедшего сквозь атмосферу, в видимой области весьма ровный: в нём более-менее равномерно представлены все цвета радуги с нерезким максимумом в жёлто-зелёной области (в чистом солнечном свете, в космосе, максимум выражен более резко). Схематически спектры солнечного света и лампы накаливания изображены на рисунке 15. Нехватка голубой составляющей света будет существенна, если пытаться заменить дневное освещение обычными лампами накаливания (например, в условиях полярной зимы) – человек начнёт испытывать «световое голодание» и недостаток гормона серотонина.

Световой поток ламп накаливания всегда пульсирует, они ведь питаются переменным напряжением сети. Нить накала нагревается то сильнее, то слабее, но сильно изменить свою температуру она не успевает благодаря быстрому изменению питающего напряжения и тепловой инерционности. Для самых распространённых ламп мощностью 60–100 Вт, подключенных к сети напряжением 220 В, коэффициент пульсаций находится в диапазоне 10–15 %, причём чем больше мощность лампы, тем меньше КП. Это понятно: ведь в более мощных лампах нить накала толще, то есть массивнее, а значит, лучше сохраняет свою температуру. У 40-ваттных ламп накаливания пульсации достигают уже 20 %. Сильно смягчает обстоятельство тот факт, что форма пульсаций света у ламп накаливания гладкая, близкая к синусоидальной, без резких скачков, в отличие от пульсаций люминесцентных ламп и дешевых светодиодов. Поэтому влияние пульсаций лампы накаливания на мозг при одной и той же величине КП существенно меньше, чем у других типов ламп. По этой причине и нормы по ограничению пульсаций во времена царствования ламп накаливания не вводились.

Перейти на страницу:

Все книги серии Наука на пальцах

Биология для тех, кто хочет понять и простить самку богомола
Биология для тех, кто хочет понять и простить самку богомола

Биология – это наука о жизни, но об этом все знают, как знают и о том, что биология считается самой важной из наук, поскольку в числе прочих живых организмов она изучает и нас с вами. Конфуций сказал бы по этому поводу: «благородный человек изучает науку, которая изучает его самого, а ничтожный человек ею пренебрегает». И был бы тысячу раз прав.У биологии очень необычная история. С одной стороны, знания о живой природе человечество начало накапливать с момента своего появления. Первые люди уже разбирались в ботанике и зоологии – они знали, какие растения съедобны, а какие нет, и изучали повадки животных для того, чтобы на них охотиться. С другой стороны, в отдельную науку биология выделилась только в начале XIX века, когда ученые наконец-то обратили внимание на то, что у всего живого есть нечто общее, ряд общих свойств и признаков.О том, чем отличает живое от неживого, о том, как появилась жизнь и многом другом расскажет эта книга.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука