Читаем Физика в быту полностью

Почему газовые разряды могут сопровождаться свечением? Электроны, движущиеся в газе при пропускании тока, сталкиваются с атомами или молекулами газа и могут их возбудить или ионизовать, то есть перевести в состояние с большей энергией. Возвращаясь через короткое время в основное состояние, атомы или молекулы излучают свет.


В бытовых лампах, о которых дальше пойдёт речь, газовый разряд происходит в смеси аргона и паров ртути, излучающей преимущественно синий и зелёный свет, а также много ультрафиолета. Сам по себе такой свет не годится для освещения. Но ультрафиолетовое излучение можно превратить в видимый свет с помощью ещё одного физического явления – люминесценции.

Некоторые вещества (их называют люминофорами) поглощают свет коротких длин волн, в том числе ультрафиолет, а затем излучают его в виде более длинных волн видимого диапазона. Это и есть люминесценция (название происходит от латинского lumen – свет). Вспомним светящиеся брошки или ёлочные игрушки: подержали их под лампой, а потом в темноте в течение нескольких минут видим свечение (некоторые люминофоры могут светиться несколько часов и даже суток). Это частный случай люминесценции – фосфоресценция, при которой свечение продолжается значительное время после прекращения исходного светового воздействия. А другие люминофоры переизлучают поглощённый свет почти мгновенно. Этот вид люминесценции называется флуоресценцией (название происходит от минерала флуорит, у которого она впервые была обнаружена). Они-то и используются в люминесцентных лампах.

Свет каких именно длин волн будет излучать люминофор, поглощая ультрафиолет, зависит от его химического состава. Внутренние стенки люминесцентной лампы покрывают таким люминофором, чтобы выходящий свет казался белым. Но спектр этого белого света не является непрерывным, он состоит из нескольких более-менее узких полос излучения аргона, ртути и люминофора.


Люминесцентные «лампы дневного света» Британская компания «Дженерал электрик» начала выпускать с 1938 года. Это были линейные (трубчатые) лампы с дешёвым люминофором, дающие холодный белый свет. В СССР массовое производство и внедрение такого рода ламп началось на 10 лет позже. В 1960–1970 годах они использовались в большинстве общественных мест, в том числе школах.

Спектр люминесцентных ламп

Люминофор – вещь чрезвычайно важная для качества света, к тому же недешёвая. В недорогих лампах используют люминофор, который излучает в основном в жёлтой и синей частях спектра, а красного и зелёного света даёт значительно меньше. Хотя свет такой лампы и кажется белым, цветопередача у неё плохая. В более дорогих лампах применяют «трёхполосный» или даже «пятиполосный» люминофор, излучающий в трёх или пяти диапазонах длин волн. Цветопередача становится гораздо лучше. Пример графика спектра лампы с качественным люминофором изображён на рисунке 16. Путём подбора люминофоров в специальных лампах может быть достигнута идеальная цветопередача (они используются в картинных галереях, музеях, типографиях).

И всё же, как ни крути, спектр не станет непрерывным, привычным и комфортным глазу.

В спектре люминесцентных ламп присутствует небольшая доля ультрафиолета УФ-А и УФ-В, который не полностью поглощается люминофором и стеклом. По мере «старения» лампы эта доля возрастает из-за деградации люминофора. При длительном воздействии ультрафиолет совместно с коротковолновым сине-фиолетовым излучением лампы может оказать неблагоприятное действие на роговицу и сетчатку глаза. И не будем также забывать, что синий свет блокирует выработку гормона сна – мелатонина.


Рис. 16. График спектра излучения люминесцентной лампы с «пятиполосным» люминофором


Самым опасным для сетчатки при длительном воздействии является сине-фиолетовый свет с длиной волны от 415 до 455 нм, и как раз в этой области находится пик в спектрах излучения люминесцентных ламп.

Для некоторых специальных целей ультрафиолетовое излучение является необходимым, например в люминесцентных лампах для соляриев. В этих случаях при изготовлении колб используют не обычное, а кварцевое стекло, хорошо пропускающее ультрафиолет.

Перейти на страницу:

Все книги серии Наука на пальцах

Биология для тех, кто хочет понять и простить самку богомола
Биология для тех, кто хочет понять и простить самку богомола

Биология – это наука о жизни, но об этом все знают, как знают и о том, что биология считается самой важной из наук, поскольку в числе прочих живых организмов она изучает и нас с вами. Конфуций сказал бы по этому поводу: «благородный человек изучает науку, которая изучает его самого, а ничтожный человек ею пренебрегает». И был бы тысячу раз прав.У биологии очень необычная история. С одной стороны, знания о живой природе человечество начало накапливать с момента своего появления. Первые люди уже разбирались в ботанике и зоологии – они знали, какие растения съедобны, а какие нет, и изучали повадки животных для того, чтобы на них охотиться. С другой стороны, в отдельную науку биология выделилась только в начале XIX века, когда ученые наконец-то обратили внимание на то, что у всего живого есть нечто общее, ряд общих свойств и признаков.О том, чем отличает живое от неживого, о том, как появилась жизнь и многом другом расскажет эта книга.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука