Относительно кратковременные физические нагрузки с отягощениями либо спринт, которые требуют проявления высокого уровня анаэробного метаболизма, вызывают специфические изменения в немедленной (АТФ и креатинфосфат) и короткоотставленной (гликолиз) системах энергообеспечения, улучшают силовые и спринтерские способности. К последнему относится увеличение максимальной мощности мышечных сокращений, количества производимой за короткий промежуток времени интенсивной работы, а также увеличение продолжительности выполнения (выносливости) высокоинтенсивных физических упражнений.
В отношении изменений, касающихся аэробных (митохондриальных) ферментов происходит, как правило, снижение активности окислительных энзимов и цитохромов, связанное, вероятно, с увеличением площади поперечного сечения мышечных клеток (преимущественно волокон типа II) без адаптивного повышения количества митохондрий. В видах спорта, требующих проявления силовых возможностей, количество капилляров может оставаться неизменным, однако большая их поверхность между крупными мышечными волокнами обусловливает снижение капиллярной плотности, приходящейся на единицу площади сечения.
Под влиянием тренировочных занятий анаэробной направленности при выполнении физических упражнений максимальной интенсивности концентрация La в крови может достигать высоких значений, что связано, очевидно, с более высоким содержанием внутримышечного гликогена и ферментов гликолиза. Напряженная тренировка на силу требует значительной мотивации и устойчивости к болевым ощущениям, возникающим в результате метаболического ацидоза (закисления) из-за повышения уровня La в крови.
Повышение способности мышц к буферированию протонов, накапливающихся в связи с накоплением La, также может иметь немаловажное значение для повышения силовой выносливости. Волокна II типа характеризуются высокими буферными возможностями, и их увеличение указывает на повышение этой способности.
Под влиянием спринтерской тренировки происходит значительное увеличение в мышцах физико-химического буферирования при расчете буферной способности на основании показателей рН и содержания La, определяемых после физической нагрузки.
Следует учитывать, что эти эффекты специфичны для мышц, задействованных в реализации силовой тренировочной программы, особенно для отдельных типов мышечных волокон, вовлеченных в выполнение физических упражнений.
В последнее время все настойчивее говорится о роли силы, силовых возможностей при проявлении выносливости спортсменов высшей квалификации, об их
Атлет, занимающийся развитием мышечной массы, силы, силовой выносливости, должен четко представлять, что способствует развитию, поддержанию и восстановлению этих качеств. Стимулирующим действием на скелетные мышцы являются: физическая нагрузка, аминокислоты, витамины, минералы, фармакологические средства, а также физиотерапевтические комплексы.
Представленные ниже лечебные физические факторы (и некоторые другие, см. гл. IV) могут применяться комплексно и совместно в различных сочетаниях и модификациях с другими средствами и методами воздействия, взаимно дополняя и усиливая друг друга, в качестве увеличения силы и объема мышечной массы.
Электростимуляция мышц
Метод электростимуляции мышц проводится по известным методикам и заключается в применении импульсного или прерывистого гальванического тока, вызывающего вынужденное ритмическое сокращение мышц. Электростимуляция токами низкой частоты (до 20 имп/с) вызывает сокращение преимущественно тонических («красных») мышечных волокон, а более высокой частоты (20–150 имп/с) – фазных («белых») волокон. На низких частотах происходит активация гликолиза в мышечных волокнах I типа, а при повышении частоты усиливается скорость клеточного дыхания и активность окислительных ферментов II типа.
Существуют два способа тренировочной стимуляции мышц – прямая и непрямая.
При
При