Мы не можем видеть молекулы из-за свойств света. Он состоит из фотонов, которые (как известно из квантовой физики) могут одновременно вести себя и как частица, и как волна. Именно волновая природа света лежит в основе работы линз и микроскопов. Но это же свойство означает, что, когда свет проникает через очень узкое отверстие или огибает его, он рассредоточивается – этот процесс именуется дифракцией. Как правило, этот эффект незаметен, но если сильно сблизить два очень маленьких объекта, то их изображения наложатся друг на друга, и человек, глядя на них через микроскоп, увидит один размытый объект, а не два. В XIX веке немецкий физик Эрнст Аббе вычислил, что два объекта можно увидеть по отдельности, если расстояние между ними составит не менее половины длины волны того света, в котором мы их рассматриваем. Для видимого света эта длина – около 500 нм. Если два объекта находятся на расстоянии ближе 250 нм друг от друга, нам хватает разрешающей способности, чтобы увидеть их в отдельности при видимом свете. Этот лимит называется пределом разрешения.
К началу XX века мы научились определять, сколько молекул должно быть в заданном объеме вещества, поэтому стало известно и примерное расстояние между атомами в молекуле. Оказалось, что оно в тысячи раз меньше длины световой волны, и невозможно рассмотреть их даже в самые лучшие оптические микроскопы. Считалось, что молекулы навсегда останутся невидимыми.
Альтернативой видимому свету оказалось интересное новое излучение, открытое в 1895 году немецким физиком Вильгельмом Рентгеном. Он изучал электрические разряды в вакуумных трубках, содержащих два электрода, между которыми в вакууме возникает высокое напряжение. При подаче тока на электроды тот из них, который был заряжен отрицательно (катод), нагревался и излучал электроны. Они летели сквозь вакуум и попадали на второй электрод (анод). Рентген открыл, что при этом из трубок выходили необычные лучи, под действием которых соединения бария светятся даже в полной темноте. Он назвал их икс-лучами и принялся исследовать их свойства. Оказалось, что они обладают огромной проникающей способностью, позволяющей заглянуть внутрь непрозрачных объектов, например увидеть кости человеческой руки.
Никто, в сущности, не знал, что же представляют собой рентгеновские лучи, не было даже ясно, частицы это или волны (сегодня известно, что они состоят из таких же фотонов, что и видимый свет, то есть имеют корпускулярно-волновую природу). В 1912 году Макс фон Лауэ и двое его сотрудников решили проверить, что произойдет, если подставить под рентгеновские лучи кристалл сульфида цинка, состоящий из атомов всего двух элементов: серы и цинка.
Оказалось, что рентгеновские лучи не рассеиваются произвольно во всех направлениях, а образуют на снимках пятна.
Фон Лауэ быстро догадался, что происходит: кристалл, с которым они работали, имел правильную трехмерную структуру, состоящую из молекул, – пирамидку из идеальных шариков. При попадании рентгеновских лучей на кристалл каждый атом должен был равномерно рассеивать волны во всех направлениях. То же самое происходит, когда мы бросаем камешек в воду. Результирующая волна, раскатывающаяся в любом направлении, должна была быть суммой волн, рассеянных каждым атомом, по которому попали рентгеновские лучи.
Рис. 3.1.
Рентгеновские лучи попадают на кристалл, в результате получаются дифракционные пятнаСуммарная сила волны, возникшей из двух волн, зависит от способа их соединения в условиях расположения относительно друг друга. Если пики и впадины у них совпадают, то говорят, что они объединились по фазе, и тогда общая волна будет вдвое сильнее ее слагаемых. Если гребни одной волны накладываются на подошвы другой, то эти волны в противофазе и полностью гасят друг друга. Прочие комбинации дают некий промежуточный результат.
Фон Лауэ понял, что в зависимости от положения атома рассеивающиеся от него волны проходят разное расстояние. Они запаздывают или обгоняют друг друга, поэтому оказываются в разных фазах и более или менее сильно друг друга гасят. Но в определенных направлениях расстояние между волнами сопоставимо с их длинами, а минимумы и максимумы волн совпадают, и они остаются в фазе, усиливая друг друга, – тогда появляются пятна на снимках.
Рис. 3.2.
Сложение волн зависит от их взаимоотношенияЭтот эксперимент показал, что рентгеновские лучи определенно можно считать волнами. Тогда же были получены первые прямые доказательства того, что кристалл – это структура из правильно упорядоченных атомов. На основе предположений о расстоянии между атомами удалось приблизительно вычислить длину волн рентгеновских лучей – они более чем в тысячу раз короче волн видимого света. Два года спустя, в 1914 году, фон Лауэ был удостоен Нобелевской премии по физике.