Читаем Генетический детектив. От исследования рибосомы к Нобелевской премии полностью

К 1960 году, спустя полвека после определения структуры поваренной соли, удалось продемонстрировать объемную картинку белка, в молекуле которого – тысячи атомов. Началась эпоха структурной биологии.

Перуц был научным руководителем Крика, когда тот готовился к защите кандидатской, а Кендрю, как минимум официально, считался консультантом Уотсона, когда тот был постдоком. Пожалуй, далеко не случайно именно в 1962 году Перуц и Кендрю совместно получили Нобелевскую премию по физике с формулировкой «за исследования структуры глобулярных белков», а Уотсон и Крик (совместно с Морисом Уилкинсом) в тот же год были удостоены Нобелевской премии по физиологии и медицине за исследования ДНК. Именно в тот год Перуц со своим отделом переехал из переоборудованного велосипедного гаража близ Кавендишской лаборатории в центре города, где его с коллегами много лет терпели «настоящие» физики, в помещения в новом четырехэтажном здании на южной окраине Кембриджа. Так появилась Кембриджская лаборатория молекулярной биологии – LMB. Лаборатория, в которой с первого же года трудились четверо нобелевских лауреатов, начала партию с тузов.

Глава 4

Первые кристаллы

В результате самоотверженных усилий Макса Перуца и Джона Кендрю удалось впервые увидеть, как тысячи атомов в молекуле белка сочетаются в филигранные структуры. Перуц и Кендрю даже смогли рассмотреть атомы железа, связывающиеся с кислородом в гемоглобине и миоглобине.

Кристаллы – это правильные трехмерные структуры, состоящие из идентичных молекул. Здесь бывает две крайности. Составить кристалл из одноатомных молекул – все равно что сделать правильную фигуру из бильярдных шариков. Это довольно просто. Но если молекулы неправильной формы и состоят из тысяч атомов, то одинаково соориентировать их для получения фигуры не так-то просто. Небольшой сдвиг – и регулярность будет нарушена. На самом деле проблема еще сложнее, поскольку структура крупных молекул (например белковых) не жестко фиксированная. В растворах их части могут смещаться относительно друг друга. Поэтому остается лишь удивляться, как белки вообще кристаллизуются. Даже сегодня никто не в силах спрогнозировать результат кристаллизации какого-либо белка. Учитывая всю неопределенность этого процесса, было совершенно непонятно, как получить кристаллы из такой структуры, как рибосома, где атомов не тысячи, а сотни тысяч.

Изначально мы не знали, должны ли рибосомы одинакового происхождения иметь одинаковую структуру или хотя бы состоять из одного и того же набора белков. Если нет, то формирование кристалла из них было бы маловероятно. Первые признаки того, что рибосомы могут иметь правильную структуру, появились спустя десять лет после их открытия, когда Брек Байерс решил проверить, что произойдет с клетками куриного эмбриона при охлаждении. Его интересовали совсем не рибосомы, а длинные внутриклеточные волокна, так называемые микротрубочки, участвующие во множестве процессов, например в делении клеток. Занимаясь этими исследованиями в 1966 году, он заметил, что рибосомы в охлажденных клетках складываются в листы правильной формы. Толщина одного листа составляла одну рибосому, то есть это были двумерные кристаллы, а не трехмерные. Макс Перуц пригласил Байерса в LMB, чтобы поработать над его двумерными кристаллами. Байерс побывал там дважды – в 1960-х и 1970-х, но интересных результатов не получил.

Тем временем молодые ученые из LBM, Найджел Анвин и Ричард Хендерсон, разработали иной способ выяснить структуру биомолекулы. Анвин был долговязым парнем с прической «битловский горшок», а коренастый Хендерсон в шортах и сандалиях выглядел как подросток. Оба были энергичны и всерьез настроены оставить след в науке. Они работали над выяснением структуры белка бактериородопсина, расположенного в мембране галобактерий и позволяющего извлекать энергию из света. На тот момент не существовало надежного способа получать трехмерные кристаллы из мембранных белков: они расположены в жировой оболочке липидных мембран, окутывающих клетки, и, следовательно, нерастворимы в воде. Анвин и Хендерсон решили рассмотреть плоские кристаллы через электронный микроскоп.

Длина волны у электронов меньше, чем у рентгеновских лучей. С помощью электронов уже было открыто атомное строение различных веществ, в частности металлов и минералов. Но для рассмотрения биомолекул с их низкой контрастностью, которая при рассеивании частиц не позволяет четко видеть структуру на фоне окружающей воды и липидных мембран, требовалось заведомо разрушительное количество электронов. Тогда Анвин и Хендерсон разработали новый метод определения структуры молекул плоского кристалла, применяя электронный микроскоп с малыми дозами электронов.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Образы Италии
Образы Италии

Павел Павлович Муратов (1881 – 1950) – писатель, историк, хранитель отдела изящных искусств и классических древностей Румянцевского музея, тонкий знаток европейской культуры. Над книгой «Образы Италии» писатель работал много лет, вплоть до 1924 года, когда в Берлине была опубликована окончательная редакция. С тех пор все новые поколения читателей открывают для себя муратовскую Италию: "не театр трагический или сентиментальный, не книга воспоминаний, не источник экзотических ощущений, но родной дом нашей души". Изобразительный ряд в настоящем издании составляют произведения петербургского художника Нади Кузнецовой, работающей на стыке двух техник – фотографии и графики. В нее работах замечательно переданы тот особый свет, «итальянская пыль», которой по сей день напоен воздух страны, которая была для Павла Муратова духовной родиной.

Павел Павлович Муратов

Биографии и Мемуары / Искусство и Дизайн / История / Историческая проза / Прочее
Актерская книга
Актерская книга

"Для чего наш брат актер пишет мемуарные книги?" — задается вопросом Михаил Козаков и отвечает себе и другим так, как он понимает и чувствует: "Если что-либо пережитое не сыграно, не поставлено, не охвачено хотя бы на страницах дневника, оно как бы и не существовало вовсе. А так как актер профессия зависимая, зависящая от пьесы, сценария, денег на фильм или спектакль, то некоторым из нас ничего не остается, как писать: кто, что и как умеет. Доиграть несыгранное, поставить ненаписанное, пропеть, прохрипеть, проорать, прошептать, продумать, переболеть, освободиться от боли". Козаков написал книгу-воспоминание, книгу-размышление, книгу-исповедь. Автор порою очень резок в своих суждениях, порою ядовито саркастичен, порою щемяще беззащитен, порою весьма спорен. Но всегда безоговорочно искренен.

Михаил Михайлович Козаков

Биографии и Мемуары / Документальное