Гарри стал искать химические модификации, не дававшие тРНК связываться с рибосомой. На тот момент никто еще даже не секвенировал рибосомную РНК. Вскоре после того как Гарри получил свои первые результаты, Фред Сэнгер из LMB научился секвенировать молекулы так, чтобы в точности определить порядок оснований в любом фрагменте ДНК, и за это получил вторую Нобелевскую премию (он – один из немногих, кто удостоен премии дважды). Тогда Гарри ненадолго вернулся в Кембридж, чтобы научиться секвенировать ДНК. Не пытаясь секвенировать РНК напрямую (эта задача и сегодня остается гораздо сложнее, чем аналогичная работа с ДНК), Гарри воспользовался методами Сэнгера, чтобы определить точную последовательность рибосомных РНК методом секвенирования их генов, расположенных в ДНК. Крупные участки рибосомной РНК из субъединиц 30S и 50S называются соответственно 16S и 23S РНК.
Сравнивания РНК-последовательности от разных видов, Гарри с Карлом Вёзе смогли выяснить их соотношение и принцип получения пар оснований. В рибосомной РНК много сегментов, имеющих форму двойной спирали. Вёзе пришел к выводу, что, кроме бактерий и эукариот, существует третий самостоятельный домен живых организмов – археи. Сегодня считается, что примитивные бактерии скрестились с древними археями и породили первые эукариоты (организмы, в клетках которых есть ядро). Археи, как и бактерии, являются прокариотами, то есть не имеют клеточного ядра. Затем из эукариот развились сложные многоклеточные организмы, в том числе люди.
После того как была отсеквенирована рибосомная РНК, Гарри решил определить место воздействия на молекулу химических агентов, изменявших ее. Он приспособил для этого метод, ранее разработанный для проверки места связи белков с ДНК, который состоял в обработке ДНК химическим реагентом до и после того, как с ней свяжется белок. Белок защищал те участки ДНК, с которыми связывался, и добавление реагента позволяло их измерить. Гарри и его студенты, среди которых следует особо отметить Данеша Моазеда, стали применять этот метод, именуемый футпринтингом, изучая рибосомную РНК. Они определили, какие ее участки связываются с молекулами тРНК и рибосомными белками. Но оставалось неясным, зачем части рибосомы соприкасаются друг с другом.
Футпринтинг с использованием антибиотиков оказался более интересен. Некоторые модифицированные белки обеспечивают резистентность рибосом к антибиотикам, но никому не удавалось «заставить» антибиотики напрямую связываться с рибосомными белками. При помощи футпринтинга Гарри доказал, что каждый антибиотик связывается с конкретным участком рибосомной РНК. Поскольку антибиотики блокируют работу рибосом, очевидно, что у рибосомной РНК должна быть некая важная функция. Так вся дисциплина была переориентирована на определение роли рибосомной РНК.
После длительного забвения рибосомы вновь вызвали интерес. Питер Мур в статье «Рибосома возвращается», опубликованной в
В 1992 году, к концу моего творческого отпуска, статья Гарри в
Статья Гарри подняла большую шумиху в широком научном сообществе, но в целом этот результат не особо удивил тех, кто давно занимался рибосомами. Кроме того, он был не окончательным. Гарри изрядно потрудился, чтобы очистить субъединицу 50S от белков, однако в ней все равно оставалось немало белковых фрагментов, которые могли отвечать за реакцию. Когда Гарри применил иной метод, на этот раз полностью удалив все белки, частицы стали неактивны. Эта процедура не работала с рибосомами от