Читаем Геометрия, динамика, вселенная полностью

x| = x| cos ALPHA + y| sin ALPHA + vt cos BETA + a, 2 1 1

y|= — x| sin ALPHA + y| cos ALPHA + vt sin BETA + b, (12) 2 1 1

где ALPHA — произвольный угол поворота системы отсчета I, BETA — угол между направлениями O|O| и O|x|. Постоянные a и

1 2 2 2 b отражают однородность (трансляционную инвариантность) евклидова пространства. Условие (12) является обобщением аналитического определения статического евклидова пространства. Евклидово пространство однородно и изотропно. Следовательно, при произвольном преобразовании декартовой системы координат осуществляются соотношения:

x| = x| cos ALPHA + y| sin ALPHA + a, 2 1 1

y|= — x| sin ALPHA + y| cos ALPHA + b, (13) 2 1 1

Таким образом, инерциальные системы отсчета — основа динамики — являются обобщением статического евклидова пространства. Это обобщение отражается включением членов, содержащих множитель vt, обуславливающих равноправие всех инерциальных систем отсчета.[6]

Пожалуй, интересно отметить, что в течение многих столетий доминировала механика, в которой допустимые преобразования представлялись соотношениями (13). Эта механика была унаследована от Аристотеля, который полагал, что любое движение (в том числе и равномерное) обусловлено внешним воздействием. Потому в рамках такой механики существовала единственная привилегированная система отсчета — та, к которой тело покоилось. Естественно, что геометрия, соответствующая подобной механике, была тождественна геометрии Евклида.

Преобразование (12) подчеркивает особенность классической механики. Время t и скорость v никак не связаны с пространственными координатами и могут принимать любые значения. Поэтому, хотя пространство, представленное геометрией Евклида, имеет определенную метрику (в данном случае x**2 + y**2 = const), совокупность времени и пространственных координат такой определенной метрикой не обладает.

3. «ВЫВОД» КЛАССИЧЕСКОЙ ДИНАМИКИ ИЗ СВОЙСТВ ПРОСТРАНСТВА

Почти во всех учебниках физики характеристики пространства и уравнения движения излагаются независимо. Поэтому создается впечатление, переходящее в убеждение, о независимости этих основных элементов физики. В действительности же свойства пространства (евклидовость) практически предопределяют классическую динамику.

Ограничимся (как условились ранее) анализом системы двух тел, одно из которых будем полагать телом отсчета, а другое материальной точкой, положение которой характеризуется вектором r и временем t. Из определения инерциальной системы отсчета следует, что они являются единственной привилегированной системой отсчета, поскольку она отражает наиболее общие свойства пространства изотропию и однородность. Для системы двух тел существует единственное выделенное направление — вектор r, соединяющий тело отсчета и материальную точку.` Поэтому все динамические и кинематические величины будут направлены вдоль вектора r. Обозначим меру воздействия на материальную точку символом Ф. По определению, воздействие, а следовательно и сила, инвариантно относительно равномерного движения инерциальной системы. Поскольку существует единственное выделенное направление r, то функция Ф определяется вектором r или его производными dr/dt, d**2 r/dt**2, d**3 r/dt**3… (предполагается, что они параллельны). Действие в принципе может зависеть от констант m|, m|…., характеризующих

1 2 материальную точку

dr d**2 r Ф = Ф (m|, m|…, r, — , ----…). (14)

1 2 dt dt**2

Однако при учете свойств инерциальной системы это выражение сильно упрощается. Действительно, в общем случае аргументы r и v = dr/dt исключаются вследствие эквивалентности инерциальных систем. Всегда можно выбрать систему, в которой в данный момент v=0. Производные высших порядков: d**3 r/dt**3, d**4 r/dt**4…. в общем виде также не могут определять движение, поскольку в этом случае, помимо выделенного класса систем отсчета (соответствующего v=const), существовали бы и другие привилегированные системы отсчета, удовлетворяющие условиям a = d**2 r/dt**2=const или b = d**3 r/dt**3=const и т. д. Поскольку рассматривается материальная точка, то естественно допустить, что она характеризуется единым параметром m=m|. Поэтому (14) можно

1 записать в форме

d**2 r Ф = Ф (m, — --). (15)

dt**2

Величина m — внутренняя характеристика тела, вторая производная d**2 r/dt**2 определяется взаиморасположением тела отсчета и материальной точки. В рамках ньютоновской механики обе величины абсолютно независимы. Поэтому естественно предположить, что они входят в выражение (14) в виде произведения

d**2 r Ф = Ф (m —---). (16)

dt**2

Назовем силой функцию F, обратную функции Ф, тогда получаем основной закон

d**2 r F = m —---. (17)

dt**2[7]

Из свойств пространства вытекают характеристики дальнодействующих сил, составляющих основу классической механики.

Перейти на страницу:

Похожие книги