Размерность физического пространства N = 3 занимает среди геометродинамических характеристик особое место. Изотропию и однородность физического пространства — его евклидовость (псевдоевклидовость) — можно объяснить его простотой. Эти свойства пространства характеризуют его предельную симметричность. Пространство Евклида единственное максимально симметричное пространство с нулевой (экстремальной) кривизной. Экстремальность симметрии (хотя и в меньшей степени) характеризует и другие космологические пространства (пространство Лобачевского или сферу). Поскольку известно, что природа «любит» симметрию и экстремальность, то кажется естественным, что ее выбор остановился на симметричных пространствах.
В рамках модели раздувающейся Вселенной евклидовость пространства Метагалактики естественно интерпретируется в духе основных геометрических идей. Метагалактика — малая часть Вселенной, а малые области достаточно гладкого пространства можно хорошо описать с помощью евклидовой геометрии.
Совершенно иная ситуация возникает при попытке подойти к размерности физического пространства с математических позиций. Значение N = 3 практически невыделенное число. В натуральном ряду экстремальную величину имеют значения N = 1 (или при более общем подходе к геометрии N = 0) и N = ∞. Тем не менее хорошо известно, что размерность физического пространства в исследованных интервалах 10**-16 ~< r ~< 10**28 см не равна этим значениям.
Разумеется, спор о «фундаментальности» тех или иных величин имеет несколько схоластический характер, тем не менее можно привести один аргумент в пользу того, что размерность более фундаментальное понятие, чем, например, изотропия и однородность, и тем более другие характеристики пространств. Действительно, всем симметричным пространствам соответствует свое определенное значение N. Однако любому N ≥ 3 соответствует множество симметричных пространств, число которых возрастает с N. Число же пространств переменной кривизны для любого N вообще произвольно.
Итак, значение размерности N, по-видимому, самая значительная характеристика физического пространства. Но тогда остается вопрос: почему наблюдаемая размерность Метагалактики N=3?
На наш взгляд, попытка искать ответ на этот вопрос, оставаясь лишь в пределах математики, обречена на неудачу. Ответ может содержаться, как нам представляется, в одной важной, но малоразработанной области физики, связанной с численными значениями фундаментальных постоянных. С первого взгляда кажется, что обращение к этой области — уход в сторону. Однако хорошо известно, что в физике прямолинейность отнюдь не является синонимом краткости.
Итак, будем искать природу размерности нашей Метагалактики в физической (динамической) выделенности размерности N = 3. Разумеется, в подобном подходе мы будем полагать неизменным другое его свойство — евклидовость, которое кажется вполне естественным вследствие его простоты. 8 дальнейшем будем опираться на полузабытую работу П.Эренфеста «Как проявляется трехмерность пространства в фундаментальных законах физики», значение которой можно оценить лишь в настоящее время. Сейчас рассуждения Эренфеста кажутся настолько простыми, что мы ограничимся лишь качественными соображениями`. В этой работе содержатся две взаимосвязанные кардинальные идеи, развитие которых и будет положено в основу нашего анализа природы пространства и физических закономерностей на современном уровне.[19]
Первая идея заключается в доказательстве отсутствия некоторых основных устойчивых связанных состояний при изменении численного значения фундаментальных постоянных.
Вторая — в утверждении: чтобы понять, почему мир устроен так, а не иначе, необходимо варьировать, изменять фундаментальные постоянные.
Заметим, что в работе Эренфеста эти утверждения не содержатся в таком явном виде, однако использованный им метод неявно опирается на обе идеи.
Подчеркнем исключительную нетривиальность этих идей не только для времени написания этой работы (1917 г.), но даже и для современной эпохи. Физики привыкли к тому, что фундаментальные постоянные в лабораторной физике имеют фиксированные значения, которые в многочисленных таблицах представлены с колоссальной точностью. Поэтому даже мысленные манипуляции с фундаментальными постоянными, к которым в первую очередь следует отнести размерность N, вызывают, как правило, в лучшем случае сомнение, а в худшем — отрицание. Однако автор надеется, что последующая часть его книги поможет убедиться в правомерности подхода Эренфеста.
Перейдем далее к изложению его идей.
Рассмотрим устойчивость системы, связанной в N-мерном евклидовом пространстве дальнодействующими силами и состоящей из двух тел. Для простоты буем полагать, что одно тело неподвижно, а движется лишь второе. Это означает, что константы взаимодействия первого тела (например, масса) существенно превышают константы взаимодействия второго и первое тело можно полагать неподвижным. В таком случае полная потенциальная энергия U| системы в N-мерном
N пространстве определяется выражением