Читаем Гидравлика полностью

1. Метод Лагранжа. Этот метод не используется при описании волновых функций. Суть метода в следующем: требуется описать движение каждой частицы.

Начальному моменту времени t соответствуют начальные координаты x, y, z.

Однако к моменту t они уже другие. Как видно, речь идет о движении каждой частицы. Это движение можно считать определенным, если возможно указать для каждой частицы координаты x, y, z в произвольной момент времени t как непрерывные функции от x, y, z.

x = x(x, y, z, t)

y =y (x, y, z, t)

z = z(x, y, z, t) (1)

Переменные x, y, z, t, называют переменными Лагранжа.

2. Метод определения движения частиц по Эйлеру. Движение жидкости в этом случае происходит в некоторой неподвижной области потока жидкости, в котором находятся частицы. В частицах произвольно выбираются точки. Момент времени t как параметр является заданным в каждом времени рассматриваемой области, которая имеет координаты x, y, z.

Рассматриваемая область, как уже известно, находится в пределах потока и неподвижна. Скорость частицы жидкости u в этой области в каждый момент времени t называется мгновенной местной скоростью.

Полем скорости называется совокупность всех мгновенных скоростей. Изменение этого поля описывается следующей системой:

ux = ux(x,y,z,t)

uy = uy(x,y,z,t)

uz = uz

(x,y,z,t)

Переменные в (2) x, y, z, t называют переменными Эйлера.

15. Основные понятия, используемые в кинематике жидкости

Сутью вышеупомянутого поля скоростей являются векторные линии, которые часто называют линиями тока.

Линия тока – такая кривая линия, для любой точки которой в выбранный момент времени вектор местной скорости направлен по касательной (о нормальной составляющей скорости речь не идет, поскольку она равна нулю).


Формула (1) является дифференциальным уравнением линии тока в момент времени t. Следовательно, задав различные ti по полученным i, где i = 1,2, 3, …, можно построить линию тока: ею будет огибающая ломаной линии, состоящей из i.

Линии тока, как правило, не пересекаются в силу условия /= 0 или /= . Но все же, если эти условия нарушаются, то линии тока пересекаются: точку пересечения называют особой (или критической).

1. Неустановившееся движение, которое так называется иззза того, что местные скорости в рассматриваемых точках выбранной области по времени изменяются. Такое движение полностью описывается системой уравнений.

2. Установившееся движение: поскольку при таком движении местные скорости не зависят от времени и постоянны:

ux = ux(x,y,z)

uy = uy(x,y,z)

uz = u

z(x,y,z)

Линии тока и траектории частиц совпадают, а дифференциальное уравнение для линии тока имеет вид:


Совокупность всех линий тока, которые проходят через каждую точку контура потока, образует поверхность, которую называют трубкой тока. Внутри этой трубки движется заключенная в ней жидкость, которую называют струйкой.

Струйка считается элементарной, если рассматриваемый контур бесконечно мал, и конечной, если контур имеет конечную площадку.

Сечение струйки, которое нормально в каждой своей точке к линиям тока, называется живым сечением струйки. В зависимости от конечности или бесконечной малости, площадь струйки принято обозначать, соответственно, и d.

Некоторый объем жидкости, который проходит через живое сечение в единицу времени, называют расходом струйки Q.

16. Вихревое движение

Особенности видов движения, рассматриваемых в гидродинамике.

Можно выделить следующие виды движения.

Неустановившееся, по поведению скорости, давления, температуры и т. д.; установившееся, по тем же параметрам; неравномерное, в зависимости от поведения тех же параметров в живом сечении с площадью; равномерное, по тем же признакам; напорное, когда движение происходит под давлением p > pатм, (например, в трубопроводах); безнапорное, когда движение жидкости происходит только под действием силы тяжести.

Однако основными видами движения, несмотря на большое количество их разновидностей, являются вихревое и ламинарное движения.

Движение, при котором частицы жидкости вращаются вокруг мгновенных осей, проходящих через их полюсы, называют вихревым движением.

Это движение жидкой частицы характеризуется угловой скоростью, компонентами (составляющими), которой являются:

Вектор самой угловой скорости всегда перпендикулярен плоскости, в которой происходит вращение.

Если определить модуль угловой скорости, то


Удвоив проекции на соответствующие координаты оси x, y, z, получим компоненты вектора вихря

= 2.

Совокупность векторов вихря называется векторным полем.

По аналогии с полем скоростей и линией тока, существует и вихревая линия, которая характеризует векторное поле.

Это такая линия, у которой для каждой точки вектор угловой скорости сонаправлен с касательной к этой линии.

Линия описывается следующим дифференциальным уравнением:


в котором время t рассматривается как параметр.

Вихревые линии во многом ведут себя так же, как и линии тока.

Вихревое движение называют также турбулентным.

17. Ламинарное движение

Перейти на страницу:

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Инженерная эвристика
Инженерная эвристика

В книге представлены классические и новейшие — от эвристических до логических — методы активизации инженерно-технического мышления. Авторы демонстрируют междисциплинарный подход к решению изобретательских задач и тренингу интеллекта на основе универсальных языков. Последовательность в решении научно-технических проблем достигается методом выявления и разрешения противоречий. При этом формулировка проблемы в виде парадокса оказывается сильнейшим стимулом для развития творческой мысли.Книга содержит более 170 вопросов и задач, на которых заинтересованный читатель может проверить качественный уровень собственного мышления, а в случае затруднений — обратиться к приводимым решениям и ответам. Многие из этих задач озвучены авторами в 2011–2012 гг. в ходе семинаров и тренингов в рамках проекта ООО «ЛУКОЙЛ-Инжиниринг» «Академия молодого инноватора», на интеллектуальных состязаниях молодых специалистов компании.Рекомендуется инженерам, преподавателям и учащимся инженерно-технических и естественнонаучных специальностей вузов, инновационно ориентированным молодым специалистам производственного и исследовательского комплексов, а также всем читателям, заинтересованным в формировании у себя эффективного, продуктивного, действенного мышления, достижении нового интеллектуального уровня развития.

Дмитрий Анатольевич Гаврилов , Нурали Нурисламович Латыпов , Сергей Владимирович Ёлкин

Технические науки / Психология / Образование и наука