Читаем Гидравлика полностью

Это движение, называют также потенциальным (безвихревым) движением.

При таком движении отсутствует вращение частиц вокруг мгновенных осей, которые проходят через полюсы жидких частиц. По этой причине:

x = 0; y = 0; z = 0. (1)

x = y = z = 0.

Выше отмечалось, что при движении жидкости происходит не только изменение положения частиц в пространстве, но и их деформация по линейным параметрам. Если рассмотренное выше вихревое движение является следствием изменения пространственного положения жидкой частицы, то ламинарное (потенциальное, или безвихревое) движение является следствием деформационных явлений линейных параметров, например, формы и объема.

Вихревое движение определялось направлением вихревого вектора


где – угловая скорость, которая является характеристикой угловых деформаций.

Деформацию этого движения характеризируют деформацией этих компонентов


Но, поскольку при ламинарном движении x=y= z

= 0, то:


Из этой формулы видно: поскольку существуют частные производные, связанные между собой в формуле (4), то эти частные производные принадлежат некоторой функции.

18. Потенциал скорости и ускорение при ламинарном движении

 = (x, y, z) (1)

Функция  называется потенциалом скорости.

С учетом этого, компоненты  выглядят следующим образом:


Формулой (1) описывается неустановившееся движение, поскольку она содержит параметр t.

Ускорение при ламинарном движении

Ускорение движения жидкой частицы имеет вид:


где du/dt – полные производные по времени.

Ускорение можно представить в таком виде, исходя из


Составляющие искомого ускорения


Формула (4) содержит в себе информацию о полном ускорении.

Слагаемые ux/t, uy/t, uz/t, называют местными ускорителями в рассматриваемой точке, которыми характеризуются законы изменения поля скоростей.

Если движение установившееся, то


Само поле скоростей может быть названо конвекцией. Поэтому остальные части сумм, соответствующие каждой строке (4), называют конвективными ускорениями. Точнее, проекциями конвективного ускорения, которое характеризует неоднородность поля скоростей (или конвекций) в конкретный момент времени t.

Само полное ускорение можно назвать некоторой субстанцией, которая является суммой проекций

dux/dt, duy/dt, duz/dt,

19. Уравнение неразрывности жидкости

Довольно часто при решении задач приходится определять неизвестные функции типа:

1) р = р (х, у, z, t) – давление;

2) nx(х, у, z, t), ny(х, у, z, t), nz(х, у, z, t) – проекции скорости на оси координат х, у, z;

3)  (х, у, z, t) – плотность жидкости.

Эти неизвестные, всего их пять, определяют по системе уравнений Эйлера.

Количество уравнений Эйлера всего три, а неизвестных, как видим, пять. Не хватает еще двух уравнений для того, чтобы определить эти неизвестные. Уравнение неразрывности является одним из двух недостающих уравнений. В качестве пятого уравнения используют уравнение состояния сплошной среды.


Формула (1) является уравнением неразрывности, то есть искомое уравнение для общего случая. В случае несжимаемости жидкости /dt = 0, поскольку = const, поэтому из (1) следует:


поскольку эти слагаемые, как известно из курса высшей математики, являются скоростью изменения длины единичного вектора по одному из направлений X, Y, Z.

Что касается всей суммы в (2), то она выражает скорость относительного изменения объема dV.

Это объемное изменение называют пооразному: объемным расширением, дивергенцией, расхождением вектора скоростей.

Для струйки уравнение будет иметь вид:


где Q – количество жидкости (расход);

– угловая скорость струйки;

l – длина элементарного участка рассматриваемой струйки.

Если давление установившееся или площадь живого сечения = const, то /t = 0, т. е. согласно (3),

Q/l = 0, следовательно,

20. Характеристики потока жидкости

В гидравлике потоком считают такое движение массы, когда эта масса ограничена:

1) твердыми поверхностями;

2) поверхностями, которые разделяют разные жидкости;

3) свободными поверхностями.

В зависимости от того, какого рода поверхностями или их сочетаниями ограничена движущаяся жидкость, различают следующие виды потоков:

1) безнапорные, когда поток ограничен сочетанием твердой и свободной поверхностей, например, река, канал, труба с неполным сечением;

2) напорные, например, труба с полным сечением;

3) гидравлические струи, которые ограничены жидкой (как мы увидим позже, такие струйки называют затопленными) или газовой средой.

Живое сечение и гидравлический радиус потока. Уравнение неразрывности в гидравлической форме

Сечение потока, с которого все линии тока нормальны (т. е. перпендикулярны), называется живым сечением.

Чрезвычайно важное значение имеет в гидравлике понятие о гидравлическом радиусе


Для напорного потока с круглым живым сечением, диаметром d и радиусом r, гидравлический радиус выражается


При выводе (2) учли


Расход потока – это такое количество жидкости, которое проходит через живое сечение за единицу времени.

Для потока, состоящего из элементарных струек, расход:


Перейти на страницу:

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Инженерная эвристика
Инженерная эвристика

В книге представлены классические и новейшие — от эвристических до логических — методы активизации инженерно-технического мышления. Авторы демонстрируют междисциплинарный подход к решению изобретательских задач и тренингу интеллекта на основе универсальных языков. Последовательность в решении научно-технических проблем достигается методом выявления и разрешения противоречий. При этом формулировка проблемы в виде парадокса оказывается сильнейшим стимулом для развития творческой мысли.Книга содержит более 170 вопросов и задач, на которых заинтересованный читатель может проверить качественный уровень собственного мышления, а в случае затруднений — обратиться к приводимым решениям и ответам. Многие из этих задач озвучены авторами в 2011–2012 гг. в ходе семинаров и тренингов в рамках проекта ООО «ЛУКОЙЛ-Инжиниринг» «Академия молодого инноватора», на интеллектуальных состязаниях молодых специалистов компании.Рекомендуется инженерам, преподавателям и учащимся инженерно-технических и естественнонаучных специальностей вузов, инновационно ориентированным молодым специалистам производственного и исследовательского комплексов, а также всем читателям, заинтересованным в формировании у себя эффективного, продуктивного, действенного мышления, достижении нового интеллектуального уровня развития.

Дмитрий Анатольевич Гаврилов , Нурали Нурисламович Латыпов , Сергей Владимирович Ёлкин

Технические науки / Психология / Образование и наука