Читаем Глубокое обучение. Погружение в технологию полностью

Итак, как многослойные нейронные сети решают сложные задачи? Ответ кроется в обучении весовых коэффициентов. В процессе обучения эти веса корректируются таким образом, чтобы минимизировать ошибку в выходных данных сети. Это происходит с использованием алгоритма обратного распространения ошибки, который мы рассмотрим более подробно позже.

Мир многослойных нейронных сетей богат разнообразием архитектур. От полносвязных сетей до свёрточных нейронных сетей (CNN) и рекуррентных нейронных сетей (RNN) – каждая из них имеет свои особенности и применения. CNN, например, отлично подходят для обработки изображений, в то время как RNN применяются для анализа последовательных данных, таких как текст.

Итак, многослойные нейронные сети – это ключ к решению сложных задач, и их архитектуры подобны чудесам современной технологии. Наши исследования только начались, и в следующей главе мы погрузимся еще глубже, изучая, как эти сети обучаются на практике и какие задачи они могут решать.

Тайный рецепт: прямое и обратное распространение

Прямое и обратное распространение – это два ключевых процесса, лежащих в основе обучения нейронных сетей. Давайте погрузимся глубже в этот удивительный мир и узнаем, как именно нейронные сети "учатся" из опыта.

Прямое распространение

Воображайте нейронную сеть как сложную машину, которая принимает входные данные, обрабатывает их и выдает результат. Процесс передачи данных от входа к выходу называется прямым распространением (forward propagation).

Итак, давайте посмотрим, как это работает. Представьте, что у нас есть изображение собаки, и мы хотим, чтобы наша нейронная сеть определила, является ли это изображение собакой или нет. Мы передаем это изображение в нашу нейронную сеть.

Каждый нейрон в сети связан с предыдущим слоем нейронов. Нейроны в первом слое получают пиксели изображения как входные данные. Они взвешивают эти данные (грубо говоря, они решают, насколько важен каждый пиксель) и передают результат в следующий слой. Этот процесс повторяется для каждого слоя до тех пор, пока мы не получим ответ от последнего слоя – нашу оценку того, является ли изображение собакой.

Процесс прямого распространения – это как волшебство, в котором нейронная сеть обрабатывает информацию и выдает ответ, но волшебство это, конечно же, математика и вычисления.

Обратное распространение

Теперь, когда у нас есть ответ от нашей нейронной сети, как она может учиться? Тут на сцену выходит обратное распространение (backpropagation).

Давайте представим, что наша нейронная сеть дала неправильный ответ – она сказала, что изображение собаки является изображением кошки. Обратное распространение помогает сети узнать свои ошибки и скорректировать весовые коэффициенты, чтобы она делала более точные прогнозы в будущем.

Сначала мы вычисляем, насколько сильно наша сеть ошиблась. Это называется ошибкой или потерей (loss). Затем мы используем эту ошибку, чтобы определить, как нужно корректировать весовые коэффициенты в каждом нейроне, начиная с последнего слоя и двигаясь назад к первому. Это происходит с использованием методов оптимизации, таких как градиентный спуск.

Итак, обратное распространение – это магия обучения. Она позволяет нейронной сети "учиться" на своих ошибках и становиться все более и более точной в своих прогнозах с каждой итерацией.

Активируйте ум: функции активации

Добро пожаловать в увлекательный мир функций активации – ключевого элемента нейронных сетей, который придает им способность обучаться и адаптироваться. Представьте себе функцию активации как бурые глаза нейрона, которые решают, включаться или выключаться в зависимости от входных данных. Давайте глубже погрузимся в эту тему и узнаем, как они работают.

1. Сигмоида: Плавное Переключение

Первая функция активации, о которой мы поговорим, – сигмоида. Это S-образная кривая, которая переводит входные данные в диапазон от 0 до 1. Сигмоида часто используется в задачах, где нужно предсказать вероятности, например, в задачах бинарной классификации. Но у сигмоиды есть свои недостатки: она может привести к проблеме исчезающего градиента при глубоком обучении.

2. Гиперболический Тангенс: Симметричный Сигнал

Гиперболический тангенс (tanh) – это функция активации, похожая на сигмоиду, но симметричная относительно нуля и переводящая входные данные в диапазон от -1 до 1. Это делает ее более подходящей для задач, где значения данных могут быть как положительными, так и отрицательными. Тангенс помогает справиться с проблемой исчезающего градиента в некоторых случаях, но она не всегда идеально подходит.

3. Rectified Linear Unit (ReLU): Хитрый Переключатель

Перейти на страницу:

Похожие книги

Как нас обманывают органы чувств
Как нас обманывают органы чувств

Можем ли мы безоговорочно доверять нашим чувствам и тому, что мы видим? С тех пор как Homo sapiens появился на земле, естественный отбор отдавал предпочтение искаженному восприятию реальности для поддержания жизни и размножения. Как может быть возможно, что мир, который мы видим, не является объективной реальностью?Мы видим мчащийся автомобиль, но не перебегаем перед ним дорогу; мы видим плесень на хлебе, но не едим его. По мнению автора, все эти впечатления не являются объективной реальностью. Последствия такого восприятия огромны: модельеры шьют более приятные к восприятию силуэты, а в рекламных кампаниях используются определенные цвета, чтобы захватить наше внимание. Только исказив реальность, мы можем легко и безопасно перемещаться по миру.Дональд Дэвид Хоффман – американский когнитивный психолог и автор научно-популярных книг. Он является профессором кафедры когнитивных наук Калифорнийского университета, совмещая работу на кафедрах философии и логики. Его исследования в области восприятия, эволюции и сознания получили премию Троланда Национальной академии наук США.

Дональд Дэвид Хоффман

Медицина / Учебная и научная литература / Образование и наука
«Ужас Мой пошлю пред тобою». Религиозное насилие в глобальном масштабе
«Ужас Мой пошлю пред тобою». Религиозное насилие в глобальном масштабе

Насилие часто называют «темной изнанкой» религии – и действительно, оно неизменно сопровождает все религиозные традиции мира, начиная с эпохи архаических жертвоприношений и заканчивая джихадизмом XXI века. Но почему, если все религии говорят о любви, мире и всеобщем согласии, они ведут бесконечные войны? С этим вопросом Марк Юргенсмейер отправился к радикальным христианам в США и Северную Ирландию, иудейским зелотам, архитекторам интифад в Палестину и беженцам с Ближнего Востока, к сикхским активистам в Индию и буддийским – в Мьянму и Японию. Итогом стала эта книга – наиболее авторитетное на сегодняшний день исследование, посвященное религиозному террору и связи между религией и насилием в целом. Ключ к этой связи, как заявляет автор, – идея «космической войны», подразумевающая как извечное противостояние между светом и тьмой, так и войны дольнего мира, которые верующие всех мировых религий ведут против тех, кого считают врагами. Образы войны и жертвы тлеют глубоко внутри каждой религиозной традиции и готовы превратиться из символа в реальность, а глобализация, политические амбиции и исторические судьбы XX–XXI веков подливают масла в этот огонь. Марк Юргенсмейер – почетный профессор социологии и глобальных исследований Калифорнийского университета в Санта-Барбаре.

Марк Юргенсмейер

Религия, религиозная литература / Учебная и научная литература / Образование и наука