Представьте, что произойдет, если вы поместите большое число блох на середину шахматной доски? Блохи очень быстро начнут прыгать во всех направлениях, пока не заполнят всю доску. Как и тонко молотый кофе в блюде с холодной водой, блохи просто прыгают туда-сюда без какого-либо заранее заданного направления. Ни одна блоха не пытается занять как можно больше пространства, поскольку, даже если у нее будет много пространства, она снова прыгает в случайном направлении. Блохи распространяются по доске в результате случайных прыжков. Вернутся ли они когда-нибудь на те клетки, с которых стартовали, если будут продолжать прыгать? Вероятно, нет. Однако рассмотрим следующий мысленный эксперимент. Представьте две емкости. В одной, обозначенной литерой
Такие примеры уместны, поскольку мы имеем дело с большим числом объектов. Когда числа чрезвычайно велики, как число молекул в капле чернил или число людей, населяющих огромные просторы этой планеты, мы имеем более высокие шансы усреднить случайный элемент и выяснить, что может произойти с отдельным индивидом в толпе.
Очень многие сложные природные явления легко объясняются с помощью вероятностных моделей вроде подкидывания монетки или многократного выбора случайных чисел. И из этого огромного набора произвольных чисел случайность создает постоянно развивающийся динамический мир, мир, в котором цветные чернила растворяются в воде без какой-либо конечной цели, где газ отдает часть давления вакууму, чтобы следовать законам термодинамики, где блохи бесцельно прыгают по доске, но все же заполняют всю ее поверхность, и где ДНК неверно воспроизводит саму себя без какого-либо плана, создавая таким образом уникальных людей.
Скрытые переменные
Скрытые переменные внушают нам ложную мысль о том, что причины либо нет, либо ее слишком сложно найти. Громадные размеры мира также играют определенную роль, как и все невидимые струны, соединяющие его части. Мы мыслим в локальных терминах, не рассматривая множество взаимодействий между составными частями нашего мира – от субатомных частиц до галактик.
Иногда кажется, что у двух абсолютно независимых переменных появляется статистическая связь через третью переменную. Когда такое происходит, мы обнаруживаем иллюзорную корреляцию, вызванную тем, как мы видим данные или как эти данные организованы. Если бы мы простодушно собрали данные об оценках и о длине волос учеников в математическом классе, возможно, мы обнаружили бы корреляцию между длиной волос и оценками. У длинноволосых, скорее всего, будут хорошие оценки. Если мы не посмотрим на третью переменную, то можем заключить из этой корреляции, что ученикам, чтобы получать хорошие оценки, следует отрастить волосы. Мы не настолько наивны, чтобы не замечать третью переменную – скажем, возраст или пол. Длина волос как показатель может искажаться среди более старших учеников или среди женщин, у которых волосы были длиннее, чем у мужчин{100}
. Другим примером будет корреляция между доходами во взрослой жизни и отметками в колледже. Мы можем сделать ошибочный вывод, что доход во взрослой жизни зависит от оценок, которые человек получал в школе, тогда как в действительности скрытой переменной был объем работы, который ученик был готов усердно выполнять{101}.