Читаем Игра в имитацию полностью

Суть такого абстрактного подхода заключалась в освобождении алгебры, а значит, и всей математики, из общепринятой сферы вычислений и систем мер. В современной математике символы могут использоваться применительно к любым правилам, а их значение, если оно задано, может выходить за рамки численных величин. Квантовая механика послужила прекрасным примером того, как освобождение от условностей и развитие такой научной дисциплины, как математика в работе, представляющей собственный интерес, может принести значительные результаты в физике. Этот пример также указал на необходимость создать теорию не чисел и величин, а «состояний», как в случае с понятием «гильбертова пространства». По той же причине квантовые физики принялись разрабатывать новую теорию в области чистой математики, а именно абстрактную теорию групп. Сама идея создания абстрактной теории групп возникла при попытке математиков записать «операции» в символьном виде, рассматривая полученный результат, как чистую абстракцию. В результате такого абстрактного подхода ученым удалось свести алгебраические операции к общим законам, объединить их и провести новые аналогии. Такой шаг в науке можно было расценивать, как конструктивный и созидательный, поскольку, изменив правила таких абстрактных систем, наука открыла для себя новые разделы алгебры с непредвиденными областями применения.

С другой стороны, тенденция к применению абстрактного метода создала что-то вроде кризиса в области чистой математики. Если она теперь представлялась лишь игрой в символы, в которой игроки следуют произвольным правилам, что же стало с чувством абсолютной истины? В марте 1933 года Алан приобрел «Введение в математическую философию» Бертрана Рассела, в которой ученый попытался ответить на главный вопрос.

Сначала кризис возник в исследованиях в области геометрии. В восемнадцатом веке могло казаться, что геометрия — область науки, представляющая собой свод истин об устройстве мира, и аксиомы Евклида выразили их самую суть. Но уже в девятнадцатом веке появились исследования геометрических систем, которые не вписывались в геометрию Евклида. Также сомнению подверглось убеждение, что геометрия Вселенной является евклидовой. И в рамках отделения математики от естественных наук появилась необходимость задать вопрос, представляет ли евклидова геометрия в абстрактном представлении полное и законченное целое.

Оставалось неясным, действительно ли евклидовы аксиомы описывали полную теорию геометрии. Могло ли случиться так, что некоторые дополнительные предположения были хитрым образом представлены в виде доказательств из-за интуитивных и не выраженных явно идей о точках и прямых. С точки зрения современной науки, появилась необходимость абстрагировать логические связи между точками и прямыми, чтобы выразить их в рамках чисто символических правил, забыть об их «значении» с точки зрения физического пространства и тем самым показать, что в результате эта игра абстракциями была целесообразна сама по себе. Как однажды находясь под влиянием абстрактной точки зрения Виннера на геометрические объекты, Гильберт глубокомысленно заметил своим спутникам: «Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках».

В 1899 году Гильберту удалось обнаружить систему аксиом, из которой бы могли быть выведены все теоремы евклидовой геометрии. Тем не менее, доказательство существования такой системы аксиом требовало допущения, что теория «вещественных чисел» была удовлетворительной. Еще в древние времена греческие математики использовали «вещественные числа» для измерения бесконечно делимой длины отрезка. Но, с точки зрения Гильберта, этого было недостаточно.

К счастью, вещественные числа можно было описывать существенно различными способами. Уже к началу девятнадцатого века было хорошо известно, что «вещественные числа» можно представить в виде бесконечной десятичной дроби, например, число можно записать в виде 3.14159265358979.… Более точное представление получила идея, что «вещественное число» может быть представлено настолько точно, насколько требуется, в виде десятичного числа — бесконечной последовательности целых чисел. И только в 1872 году немецкий математик Дедекинд смог изобрести конструктивный подход к определению «вещественного числа», при котором их строят, исходя из рациональных, которые считают заданными. Таким образом, исследование Дедекинда объединило понятия числа и длины, а также перенаправило вопросы Гильберта из области геометрии в область целых чисел или «арифметики», в ее строгом математическом смысле. Как выразился сам Гильберт, вся его работа заключалась в том, чтобы «свести все исследования к оставленной без ответа проблеме: противоречивы ли аксиомы арифметики».


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже