Метод эмбриокультуры находит все более широкое применение в межвидовой гибридизации овощных растений. Для лука разработаны приемы выращивания in vitro абортивных зародышей от гибридных семян с разных этапов эмбриогенеза, выращивание зародышей от частично фертильных межвидовых гибридов. Культура изолированных зародышей используется в селекции томатов и других овощных растений.
Исследована гормональная регуляция роста и развития зародышей томата in vitro. Обсуждается возможность применения эмбриокультуры для получения отдаленных гибридов подсолнечника, изучаются факторы, контролирующие рост и развитие in vitro зародышей подсолнечника, выделенных в разные сроки после опыления.
Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений — регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей — использование ее в клеточной селекции.
Генетические основы применения культуры клеток растений в селекционных целях
Клетки в культуре in vitro отличаются по морфологии, по биохимическим свойствам, по физиологическому состоянию и генетически. Разнообразие (вариабельность) среди клеточных линий или растений-регенерантов называют сомаклональной вариабельностью. Генетическая природа и механизм возникновения сомаклональной изменчивости пока мало изучены. Однако четко можно выделить зависимость возникновения сомаклональных вариантов, прежде всего, от генетической гетерогенности соматических клеток исходного экспланта, генетической и эпигенетической изменчивости, индуцируемой условиями культивирования in vitro, а также от генотипа и исходного экспланта.
Полиморфизм культивируемых клеток можно объяснить видовыми и возрастными особенностями, уровнем плоидности, влиянием состава питательной среды и условий культивирования, отсутствием коррелятивных связей. Последний фактор, ведущий к нарушению жесткой регуляции, существовавшей в целом растении, видимо, является основной причиной спонтанной изменчивости клеток in vitro.
Любой фрагмент растения представляет собой мозаику различных тканей, и в зависимости от того, какая ткань даст начало каллусу, возникшие даже из одинаковых эксплантов каллусы будут гетерогенными и отличающимися друг от друга. Одинаковых, в полном смысле, эксплантов в природе быть не может, следовательно, неоднородность исходного материала (видовая, возрастная, физиологическая) предопределяет разнокачественность клеток в культуре.
Физиологическая гетерогенность состоит в том, что клетки в популяции находятся в разном физиологическом состоянии, т. е. делятся, растут, стареют, погибают. Такая культура называется асинхронной. Заставить популяцию клеток высших растений проходить фазы клеточного цикла одновременно, т. е. синхронизировать их почти невозможно. Потому что та часть клеток, которая способна в данный момент к делению, составляет 2–4 %. Неблагоприятные условия (низкая температура, исключение важных компонентов питания), задерживающие деление, в какой-то степени способствуют накоплению числа клеток, готовых к делению. Более эффективны некоторые химические вещества, блокирующие определенные стадии подготовки к делению. В лучших случаях синхронизация может быть достигнута у 10–30 % клеток, но при последующих делениях популяция опять быстро утрачивает синхронность.
Следует подчеркнуть, что физиологическая вариабельность клеток в суспензионной культуре меньше по сравнению с культурой каллусной ткани на агаре, что связано с более однородными условиями питания, аэрации и удаления токсических метаболитов из клеточного окружения в жидкой перемешиваемой среде.
Гетерогенность культивируемых клеток обусловлена генетической, эпигенетической и модификационной изменчивостью. Генетические, или мутационные, изменения приводят к изменению генотипа, которое может быть унаследовано. Мутации (изменения количества или структуры ДНК) происходят на генном, хромосомном и геномном уровнях.
Генная, или точечная, мутация означает изменение структуры ДНК в одном локусе. Генные мутации приводят к сильным или слабым изменениям морфологических, биохимических и физиологических свойств клетки. Мутации, возникающие в результате изменения макроструктуры хромосом, называются хромосомными мутациями, или хромосомными аберрациями (перестройками). Структурные перестройки хромосом возникают в результате инверсии, делеции, дупликации, транслокации и транспозиции. Геномные мутации связаны с изменением числа хромосом в ядре, т. е. с изменениями в кариотипе.