Все виды названных генетических изменений имеют место у клеток in vitro. Наиболее подробно исследована хромосомная изменчивость клеток in vitro. Даже клетки одной и той же ткани, выращиваемые в одном сосу-де, могут значительно различаться между собой по хромосомным наборам (диплоидные, полиплоидные, анеуплоидные). Причины генетической изменчивости многообразны:
1) нарушение коррелятивных связей при выделении первичного экспланта из растения, т. е. отсутствие организменного контроля;
2) действие компонентов среды;
3) влияние продуктов метаболизма, накапливающихся в среде;
4) гетерогенность исходного материала и селекция клеток определенного типа.
Хромосомная изменчивость является результатом нарушений митоза, называемых эндомитозом и эндоредупликацией. При эндомитозе происходит спирализация хромосом и начинается митоз, но нарушается веретено деления, сохраняется оболочка ядра, хромосомы не расходятся и деспирализуются внутри ядерной оболочки. Это приводит к возрастанию числа хромосом, увеличению размеров ядра и клеток. Эндоредупликация не сопровождается образованием хромосом и делением ядра, хотя содержание ДНК в ядре тоже увеличивается. К образованию полиплоидных и анеуплоидных клеток также приводят нарушения в митозе, связанные с неправильным распределением хромосом.
Клетки различного уровня плоидности различаются по скорости деления и роста, по устойчивости к неблагоприятным воздействиям, начинают конкурировать, и одни из них начинают преобладать. Такой процесс возрастающего доминирования в популяции клеток определенного типа называется клеточной селекцией. Доминирование может быть вызвано преимущественной пролиферацией одних клеток или успешной элиминацией (удалением) других. Такую селекцию правильнее называть автоселекцией, потому что она протекает спонтанно, без специального воздействия какими-либо стрессовыми факторами. В процессе автоселекции формируется наиболее приспособленный к данным условиям кариотип. Вероятно, клетки приспосабливаются к новым условиям существования путем отбора более жизнеспособных полиплоидных клеток. Интересно, что изменение условий выращивания меняет направление отбора. Показано, например, что высокие концентрации 2,4-Д и кинетина увеличивают возможность полиплоидизации.
То, что условия выращивания играют важную роль в формировании цитогенетической гетерогенности, хорошо видно из опытов с тканью гаплопаппуса. В лаборатории Р. Г. Бутенко в течение двух лет культивировались меристематические клетки этого растения, пассажи проводились раз в месяц. В итоге исходные диплоидные клетки на 95 % приобрели другие уровни плоидности. Шведский исследователь Т. Эриксон, работая с этой же тканью, пересаживал ее на свежую питательную среду через каждые 2 дня. При этом штамм сохранил стабильную диплоидную характеристику. Однако способ выращивания не может полностью гарантировать генетическую стабильность в популяции клеток, так как генетической гетерогенностью может обладать сам исходный материал. У многих растений дифференцированные ткани имеют клетки разной плоидности. Специализированные клетки, например клетки зеленой ассимилирующей паренхимы листа, запасающих тканей мясистых корней, клубней, зачастую являются полиплоидными.
Спонтанное или индуцированное каким-либо фактором образование различных вариантных форм растений можно использовать для улучшения уже существующих сортов сельскохозяйственных культур.
Как было отмечено, клетки in vitro становятся разнокачественными также благодаря эпигенетическим изменениям, т. е. изменениям в программе считки генов или потенции к их активации. Эти изменения генной активности являются наследуемыми.
К ненаследуемым изменениям у клеток в культуре относятся модификационные изменения, которые в большинстве носят адаптивный, приспособительный характер. Эти изменения не затрагивают генетических структур клетки, они соответствуют физиологической адаптации, при которой границы изменений не превышают норму реакции, обусловленной генотипом.
Гетерогенность клеток in vitro возрастает с увеличением продолжительности их культивирования. Различные типы морфогенеза, соматический эмбриогенез или органогенез, также могут по-разному сказываться на генетических изменениях и, соответственно, на фенотипе растений. Экспериментально установлено, что при соматическом эмбриогенезе время прохождения цикла клетка — растение значительно короче, чем при органогенезе, поэтому степень сходства получаемого материала и исходного родительского генотипа может быть значительно выше.