Читаем Интернет-журнал "Домашняя лаборатория", 2008 №5 полностью

Точность не менее 95 % означает, что не более генетическое расстояние между мутацией вызывающей заболевание и маркером составляет не более 5 % рекомбинации. Следовательно до ближнего к маркеру левого и до ближнего правого маркера должно быть не более 5 %, то есть расстояние между маркерами не более 5 % х 2 = 10 % рекомбинации. В 10 %-х интервалов в карте длиной 3000 % будет 3000/10=300. То есть 300 равноудаленных маркеров будет достаточно, чтобы картировать или выявить мутацию с точностью >95 %, даже ничего не зная о том, где находится исследуемый ген. Ясно, что когда это только начали делать, примерно 10 лет назад, маркеры ложились случайно, поэтому генетическую карту пришлось составить из нескольких тысяч маркеров, чтобы большинство интервалов между маркерами не превышало 10 %. Сегодня в практической работе по общегеномному скринингу у человека используют панель из 384 равноудаленных маркеров.

Молекулярный механизм гомологичной рекомбинации, предложен Холидеем.

Рассмотрим две гомологичные хромосомы: папину и мамину. В них, как предполагается, происходит однонитевой идентичный в обеих хромосомах разрыв, после которого эти части, перекрещиваясь, образуют так называемую структуру Холидея (который данную схему рекомбинации первым предложил). Далее происходит перенос точки надреза вдоль хромосомы, в результате чего части гомологичных хромосом меняются местами. В результате получаются хромосомы, составленные из кусков папиных и маминых хромосом. Механизм гомологичной рекомбинации — однонитевой разрыв в каждой из двунитевых молекул ДНК, вытеснение и замещение нити, миграция разрыва и разрешение единичной структуры Холидея.



Гомологичная рекомбинация, механизм: однонитевой разрыв в каждой из двунитевых молекул ДНК, вытеснение и замещение нити, миграция разрыва и разрешение единичной структуры Холидея


Геномные, хромосомные и генные мутации

Теперь поговорим о мутациях: геномных, хромосомных и генных.

Пример геномной мутации — удвоение всего числа хромосом в геноме (автополиплоидия), она может возникать из-за нерасхождения хромосом в митозе или мейозе.



9.27.Удвоение всего числа хромосом в геноме (автополиплоидия) может возникать из-за нерасхождения хромосом в митозе или мейозе.


Какое это имеет отношение к нам? У прямых предков человека как вида полиплоидия (чаще всего удвоение) случалась неоднократно, но последний раз — более 100 миллионов лет назад. У животных и растений она встречается часто, особенно у культурных растений. При отборе человек просто не замечал, что отбирал полиплоиды. Например, культурный картофель — тетраплоид, банан — триплоид, он пригоден к употреблению, так как не образует семян, в отличие от диплоида, который состоит из жестких семян и почти не имеет мякоти.



При скрещивании дикорастущих видов было ресинтезировано несколько видов культурных растений, например, слива (Prunus domestica). Константная и гибридная форма, полностью сходная с домашней сливой получена при скрещивании терна P.spinosa (2n=32) с алычой P.divaricata (2n=16). Это растение имело, как и P.domestica, 2n=48 хромосом. Вероятно, дикая слива в ходе эволюции получилась именно таким путем.



А триплоиды просто так не получишь, у них даже семян не образуется, но они удобны в практических целях человека, например для получения большей урожайности и плодов без семян (у арбузов, бананов и т. д.) У арбуза гаплоидный набор n = 11 хромосом. Скрещивание тетраплоидного (4n=44) и диплоидного (2n = 22) арбуза дало триплоид (3n = 33) — бессемянный, крупноплодный, устойчивый к заболеваниям, в отличие от родительских форм.



Межвидовое скрещивание можно наблюдать у близкородственных животных: осла с лошадью — мул, или у коня с ослицей — лошак, они более выносливы, хоть и бесплодны. Вероятность появления потомства у мулов и лошаков (а это зависит от того, отойдут ли при делении все хромосомы правильно к одному полюсу) равна одной второй в степени n, где n — гаплоидное число хромосом. С такой частотой будут образовываться яйцеклетки и сперматозоиды, соответствующие по хромосомному составу родителям — ослу или лошади. Видно, что вероятность эта очень мала.



Теперь поговорим о хромосомных мутациях. Хромосомные мутации — изменение числа отдельных хромосом в геноме (анеуплоидия) или целостности хромосом (перестройки). Это одна из причин болезней человека. Моносомия (In) или трисомия (3n) хромосомы в оплодотворенной яйцеклетке будут смертельны для плода (кроме половых и мелких хромосом), а в соматических клетках часто приводит к раку.

Перейти на страницу:

Похожие книги