Основная часть генома человека занята не генами: 63–74 % длины — межгенные пространства, половина из них — повторы. Ген человека внутри «пустой»: 95 % внутригенной ДНК вырезается (интроны). Общая длина белок кодирующих областей около 1 % от геномной ДНК человека. Это лишь в 3 раза больше длины генома бактерий.
От 26383 до 39114 генов человека были предсказаны компьютером (в 2001 г.), но лишь менее 7000 были подтверждены на человеке. И более чем для 80 % генов, хоть в чем-то была пересмотрена структура в период с 2001 по 2003 г и продолжает уточняться на микрочипах.
Сейчас предсказанное число генов у человека 20–25 тысяч и существование около 19 000 из них экспериментально подтверждено — с них образуются транскрипты.
Имеющееся на данный момент определение гена (ген — это фрагмент геномной ДНК с котранскрибируемыми субфрагментами) — не полное. Например, возможна транскрипция с двух цепей. Плохо выявляются короткие гены и белок-некодирующие гены. Их, по крайней мере, под тысячу, но точное число не известно. Такие гены — тоже гены, хоть белок они и не кодируют. Они — гены, потому что с них образуется РНК. Причем РНК некоторых белкнекодирующих генов состоит из нескольких экзонов. То есть, клетке эти РНК зачем-то нужны, но мы пока не понимаем, зачем.
Альтернативный сплайсинг, биологическая роль и механизмы
Предположим, образовался транскрипт зрелой мРНК, и он может содержать экзоны 1, 2, 3. Это вовсе не означает, что он обязательно будет содержать их все. У нас может появиться РНК, которая будет содержать экзоны 1 и 2 или экзоны 1 и 3, ив результате с них будут образовываться разные белки. Такой способ процессинга (обработки) генетической информации называется альтернативный сплайсинг.
У человека есть ген slo. Он «работает» во внутреннем ухе, в частности, этот белок присутствует в ворсинках, которые отвечают за распознавание высоты звука. Он состоит из 35 экзонов (на рисунке — прямоугольники), 8 из которых (синие) могут или присутствовать, или отсутствовать в зрелой мРНК. Возможны 8! = 40 320 вариантов сплайсинга, но только около 500 из них обнаружены. Других, может быть, и нет, то есть природа не должна, вообще говоря, реализовывать все возможные варианты.
Биологическая роль множественного сплайсинга заключается в следующем. Разные типы волосяных клеток внутреннего уха реагируют на звуки разных частот от 20 до 20 000 герц. Различия клеток в восприятии частоты частично определяются свойствами альтернативных сплайс-форм белка Slo. Как определяется выбор между вариантами сплайсинга неизвестно.
Разные типы волосяных клеток внутренне по уха реагируют на звуки разных частот от 20 до 20 000 герц. Различия клеток в восприятии частоты частично определяются свойствами ал тернатмвных сплайс-форм белка Slo.
Как определяется выбор между вариантами сплайсинга неизвестно
Известны случаи, когда с одного локуса образуются тысячи разных белков. К ним, в частности, относятся белки, которые образуются на поверхности нервных клеток. Таким образом, они, видимо, как-то участвуют в распознавании друг друга, и в формировании нейронных сетей. В этом случае происходит выбрасывание не только экзонов или интронов, но и может реализовываться и альтернативный участок инициации транскрипции. Такие случаи известны, в частности, для человека, когда у разных генов есть несколько разных промоторов, каждый из которых дает свою РНК, в которой, в зависимости от того, где он начался, будет дополнительный экзон, связанной с различной длиной транскрипта на 5' — конце.
Механизм сплайсинга
Процесс соединения одного экзона с другим происходит в участках определенной последовательности нуклеотидов. Донорный сайт сплайсинга всегда заканчивается одним из двух динуклеотидов, обычно — AG.