Схема аттенюатора (рис. 2.16) построена на резисторном делителе напряжения, выходы которого подключены к аналоговому переключателю на МОП-транзисторах. Управление интегральной микросхемой осуществляется сигналами напряжением минус 15 В. Амплитуда входного сигнала до 10 В. Аттенюатор дискретно, с шагом 20 дБ, ослабляет сигнал на выходе. На рис. 2.16,б
приведены кривые-изменения фазового угла выходного сигнала от частоты. Эти изменения связаны с влиянием проходных емкостей полевых транзисторов интегральной микросхемы. Максимальный вклад в изменение фазы выходного сигнала оказывают первые два ключа. Кривая 1 характеризует выходной сигнал при ослаблении 20 дБ, кривая 2 — при ослаблении 40 дБ, кривая 5 — 60 дБ, кривая 4 — 80 дБ. Если делитель построить на резисторах с сопротивлениями R1-R4 = 1,2 кОм; R5-R8 = 10 кОм, то фазовый сдвиг будет значительно уменьшен. Кривая 5 характеризует выходной сигнал при ослаблении 60 дБ для второго варианта аттенюатора.
Управляемое линейное сопротивление.
Сопротивление полевого транзистора линейно зависит от управляющего напряжения. Как видно из характеристики, существуют два линейных участка: при U
упр > 1 В и Uупр < 0,4 В. В первом случае сопротивление меняется от 18 до 37 кОм, а во втором — от 1 до 300 Ом. Линейность изменения сопротивления обеспечивается идентичностью характеристик полевых транзисторов, которые находятся в интегральной микросхеме К504НТ4Б. Управление вторым полевым транзистором осуществляется посредством изменения режима работы первого транзистора, который включен в цепь ООС (рис. 2.17).
Управляемое сопротивление для переменного тока.
Схема (рис. 2.18) позволяет получить изменение проводимости транзисторов на 100 дБ, при этом ток в управляющей цепи меняется от 0 до 1 мА. Управляющее напряжение включается таким образом, чтобы открыть транзисторы. Сопротивление n-р перехода при малых смещениях меняется в широких пределах. Входной сигнал проходит через четыре n-р перехода.
Для германиевых транзисторов управляющий ток должен лежать в диапазоне от 10 мкА до 10 мА. Сопротивление меняется по формуле R
= 1,1/h21э∙I, где h21э — коэффициент передачи транзистора. У кремниевых транзисторов управляющий ток равен от 1 мкА до 1 мА, а сопротивление меняется по формуле R = 2,5/h21э∙I. Входное сопротивление при Iу = 0 для германиевых транзисторов составляет 4,7 кОм, для кремниевых транзисторов — 2,3 кОм. При входном сигнале 50 мВ нелинейные искажения составляют менее 3,5 %. В схеме транзисторы VT1 и VT2 можно заменить интегральной микросхемой К10КТ1, а транзисторы VT3 и VT4 — интегральной микросхемой К124КТ1 (К162КТ1).
4. ЭКВИВАЛЕНТЫ КОНДЕНСАТОРОВ
Уменьшение емкости постоянного конденсатора.
Включение конденсатора в цепь ОС активного элемента позволяет управлять эквивалентной емкостью с помощью резистора. Эквивалентная емкость конденсатора в схеме на рис. 2.19 зависит от потенциала, до которого он может зарядится при действии входного сигнала. При изменении напряжения, поступающего на вторую обкладку конденсатора, появляется возможность менять эквивалентную емкость. Если на базы транзисторов VT2 и VT4 с резистора R подается половина напряжения, то эквивалентная емкость будет в два раза меньше емкости конденсатора. Подобным способом можно изменять емкость в 1000 раз. Для уменьшения габаритов устройства транзисторы VT1 и VT2 можно заменить интегральной микросхемой К101КТ1, а транзисторы VT3 и VT4 — К124КТ1 (К162КТ1).
Увеличение емкости постоянного конденсатора.
Подключением конденсатора в цепь ООС усилителя можно изменить эквивалентную емкость конденсатора Сэкв
=С∙(1 — К). Усилитель должен менять коэффициент усиления с переворотом фазы сигнала. Коэффициент усиления можно регулировать с помощью резистора R2 (рис. 2.20). Большое входное сопротивление усилителя сводит к минимуму токи утечки электронного конденсатора.
Переменный конденсатор на ОУ.
Конденсатор постоянной емкости (на схеме рис. 2.21,а
) превращается в переменный за счет изменения коэффициента усиления ОУ. Эквивалентная емкость его равна Сэкв = С∙(1 + R2/R1), где R1 и R2 — части потенциометра R. Таким образом, эквивалентная емкость зависит от угла поворота движка потенциометра. Грубое и плавное изменение коэффициента передачи, а следовательно и эквивалентной емкости возможно во второй схеме на рис. 2.21,б. Здесь Сэкв = C∙[1 + R2/R1 + R3/R4 +R2R3/R1R4].
5. ЭКВИВАЛЕНТЫ ДИОДОВ И ТРАНЗИСТОРОВ
Идеальный диод.