Очень калорийным горючим является жидкий водород. При сжигании в кислороде он может обеспечить скорость истечения до 3,75
Гораздо выгоднее в этом отношении некоторые химические соединения водорода. Многого можно ожидать от металлических горючих, например, порошков алюминия, магния и других. При соединении с кислородом они выделяют весьма большие количества теплоты.
Есть окислитель еще более активный, чем даже сам кислород, — это фтор, химический элемент из так называемой группы галогенов. Любопытно, что фтор легко окисляет все вещества, включая кислород!
Фтор очень ядовит — в этом одно из препятствий к его использованию в межпланетных кораблях. И все-таки надо полагать, что фтористые соединения, в частности фтористый кислород, будут использованы как окислители. Найдет себе применение и озон, по своим окислительным свойствам также превосходящий кислород.
Подсчеты показывают, что применение наилучших из возможных химических топлив способно удвоить существующие скорости истечения, доведя их до 4–4,5
Будем считать, что
В дальнейшем мы рассмотрим некоторые принципиально новые возможности решения проблемы, например, использование атомной энергии для реактивных двигателей, а сейчас остановимся на одном замечательном изобретении Циолковского, которое позволяет иным путем приблизиться к космическим скоростям.
Речь пойдет о так называемых составных ракетах.
Когда в прошлом полярные исследователи стремились достичь полюса, они применяли метод, несколько напоминающий идею составных ракет. В путь отправлялась большая группа путешественников, везущая с собой значительные запасы продовольствия. На определенных расстояниях друг от друга организовывались склады с таким количеством продовольствия, которое было необходимо для обратного возвращения. С каждой стоянки часть экспедиции возвращалась назад и лишь оставшаяся в конце концов небольшая группа исследователей штурмовала полюс. Так, например, были организованы антарктические экспедиции Амундсена и Роберта Скотта.
Представим себе теперь составную ракету Циолковского, состоящую из двух или нескольких звеньев, т. е. ракет, как бы вложенных друг в друга (рис. 10).
Рассмотрим, как летит двухступенчатая ракета.
При взлете с Земли действует только первая, «земная» ракета. Когда ее топливо израсходуется, земная ракета автоматически отделяется от второй «космической» ракеты, двигатель которой как раз в этот момент и начинает свою работу. «Земная» ракета спускается на Землю, а «космическая» продолжает полет, набирая нужную скорость.
Нетрудно сообразить, что составная ракета может достичь значительно бoльших скоростей, чем обычная. В самом деле, конечная скорость ракеты по формуле Циолковского зависит от отношения масс
Допустим, что составная ракета состоит из двух одинаковых ракет весом до 250
Таким образом, общий вес составной ракеты и общее количество заключенного в ней топлива таково же, что и у простой ракеты.
Найдем теперь отношение
Наш расчет не вполне точен, и более строгие вычисления, учитывающие ряд обстоятельств, в частности притяжение Земли, приводят к несколько меньшим результатам. Несмотря на это, выгода составных ракет очевидна. При межпланетных перелетах они найдут себе широкое применение.