Задействованная здесь алгебра входит в область исследований, называемую теорией игр. Несмотря на фривольное название этой сферы, работавших в ней математиков всегда воспринимали всерьез. В эпоху, когда никому не позволялось встречаться с коллегами по другую сторону “железного занавеса”, обе стороны понимали, что вероятность взаимного уничтожения снизится, если дать этим математикам возможность поговорить друг с другом. В 1971 году в Вильнюсе, в Литве, состоялась беспрецедентная встреча специалистов по теории игр из Америки, Европы и Советского Союза. Прошел всего год с момента подписания СССР, США и другими странами Договора о нераспространении ядерного оружия. Все стороны хотели сохранить мир, и для этого им в том числе необходимо было организовать такую встречу для своих математиков[93]
.Здесь невозможно описать, какой вклад в математику они внесли. Многие их выкладки настолько сложны, что их подробно не объясняют даже студентам-математикам, пока они учатся на младших курсах. Одни из них связаны с выработкой наилучшего ответа на угрозу при всех смягчающих обстоятельствах. Другие – с оптимизацией объемов ядерных запасов в условиях взаимного недоверия. Третьи позволяют понять, в разработку каких контрмер стоит вкладываться и как именно их применять.
В разные годы над алгеброй гонки вооружений поработало немало математиков, но Джон Нэш стоит на ступеньку выше всех остальных. Дело в том, что он доказал существование знаменитого “равновесия Нэша” – алгебраического способа найти лучшее решение дилеммы в условиях, когда две стороны не доверяют друг другу. В нем задействуется сложная форма линейной алгебры и описывается сценарий, в котором противники оказываются в ситуации, когда ни один из них не может улучшить свое положение. Равновесная стратегия может быть неоптимальной для конкретного игрока, но при этом единственной, в которой ситуация не становится хуже. Равновесие Нэша не удовлетворяет ни одну из сторон, но все-таки ни одна из сторон не собирается ничего предпринимать, поскольку сложившееся положение – меньшее из зол.
Выявив условия для существования равновесия Нэша и описав стратегии, которые позволяют к нему прийти, Джон Нэш получил Нобелевскую премию по экономике и вошел в историю, хотя его вклад и остается недооцененным. Нэш предоставил обеим сторонам конфликта в холодной войне неопровержимое доказательство того, что им следует смириться с прохладной разрядкой и больше не предпринимать никаких шагов. По сути, он сделал мир безопаснее с помощью алгебры. Сдается мне, Никколо Тарталье это пришлось бы по нраву.
В заключение мне хочется заверить вас, что порой даже простейшая на первый взгляд алгебра заводит профессиональных математиков в тупик. Возможно, вы слышали о последней теореме Ферма? Описать ее очень просто, однако на поиск решения у человечества ушло несколько сотен лет.
Французский математик Пьер Ферма был великим ученым, но отказывался публиковать свои работы. После смерти Ферма в 1665 году его сын Самуэль решил собрать все бумаги отца и опубликовать наиболее значимые выводы. Просматривая экземпляр “Арифметики” Диофанта из отцовской библиотеки, Самуэль обнаружил на полях заметку на латыни. В ней говорилось: “Невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него”.
Сегодня мы записываем утверждение Ферма следующим образом: в уравнении
невозможно найти
Ферма утверждал, что может доказать различные теоремы, и во множестве других заметок, и математики, изучавшие его бумаги, в конце концов смогли найти все доказательства, за исключением доказательства, связанного с уравнением Диофанта. Так эта задача и стала называться последней теоремой Ферма.
Сразу ясно, что при
Уайлс работал над задачей до 1995 года – как одержимый, в одиночестве, в тайне от всех. Теперь он стал знаменитостью в математическом мире, и все-таки даже ему не под силу ответить на один вопрос об этой теореме: правда ли у самого Ферма имелось доказательство, которое оказалось утраченным?
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии / Культурология