Ценность идей Галуа в том, что преобразования служат абстрактной математической связью с физической характеристикой симметрии. Так, перестановка
Симметрия предполагает, что можно что-то изменить и проверить, меняется ли при этом внешний вид или поведение того, что вы только что изменили. Если перемен не происходит – перед вами симметрия. Если что-то изменилось, симметрию можно назвать нарушенной. Простые примеры можно найти в геометрии: квадрат обладает зеркальной симметрией по диагонали. Если вы приставите плоское зеркало к его диагонали, то увидите точно такой же квадрат. Квадрат также имеет четыре вращательных симметрии, каждая из которых достигается при повороте фигуры на 90°. Если повернуть квадрат всего на 45°, он будет выглядеть иначе (скорее как ромб): симметрия нарушена.
В физике частиц, где симметрии описываются с помощью абстрактной алгебры, происходящие изменения немного сложнее. Так, можно заменить частицу на античастицу. Если в их взаимодействиях не заметно разницы, перед вами симметрия. Хороший пример – изменение заряда двух электронов на противоположный. Два позитрона отталкивают друг друга точно так же, как и два электрона. Это зарядовая симметрия.
Симметрии лежат в основе наших представлений о физическом мире, поскольку многие процессы в физике можно описать языком отражений, вращений и простых перестановок. Такие симметрии могут быть пространственными или временными, а также могут возникать в физических свойствах, таких как электрический заряд. Симметрия тесно связана с законами сохранения, которые гласят, что определенные характеристики физической системы не могут просто бесследно исчезнуть. Взять, к примеру, закон сохранения энергии. Вероятно, из школьных уроков физики вы помните, что энергию можно преобразовывать из одной формы в другую – скажем, из кинетической в потенциальную, закатывая валун на вершину холма, – но она не исчезает из Вселенной просто так. Часть ее может рассеяться, как звук, с которым валун скатится с другой стороны холма, а часть преобразуется обратно в кинетическую энергию валуна, а также земли и камней, сдвигаемых им с места. И все же она никуда не исчезнет. Это объясняется симметрией в законах физики: если не вдаваться в детали, эти законы симметричны во времени и не меняются от минуты к минуте и даже от тысячелетия к тысячелетию. Другие симметрии обусловливают существование других законов сохранения. Так, орбиты планет вокруг Солнца имеют вращательную симметрию, связанную с законом сохранения момента импульса. Впрочем, этих идей не найти в трудах Галуа. Их появлением мы обязаны уже выдающемуся математику Эмми Нётер.
Я потрясен тем, что Амалия Эмми Нётер – первая женщина, с которой мы встречаемся лицом к лицу на страницах этой книги. Женщинам в математике приходилось преодолевать такие предубеждения, что на математической карьере Нётер едва не был поставлен крест. Ее отец преподавал математику в университете, и оба ее родителя хотели, чтобы все их дети тоже занялись наукой. Но братьям Нётер пришлось гораздо легче.
Эмми Нётер родилась в Эрлангене, в Германии, в 1882 году. Она была невероятно умна, но когда ей пришло время поступать в университет, оказалось, что дорога туда ей закрыта. Университет Эрлангена, где работал ее отец, еще не принимал женщин. В конце концов она смогла получить высшее образование, но снова оказалась в тупике: ни один университет не готов был предложить ей оплачиваемую должность, чтобы она могла заниматься исследованиями или преподавать математику.
Нётер так любила свой предмет, что семь лет преподавала в Эрлангене бесплатно. Продвинуться дальше ей удалось лишь тогда, когда о ее блестящих способностях узнали ведущие немецкие математики Давид Гильберт и Феликс Клейн, которые предложили ей позицию в своем математическом институте при Гёттингенском университете. Четыре года Нётер работала ассистенткой Гильберта и не получала жалованья. Лишь в 1922 году ей наконец удалось занять в Гёттингене оплачиваемую должность. К тому времени она уже совершила ряд своих величайших открытий, которые, пожалуй, можно причислить к величайшим достижениям во всей истории математики[85]
.Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии / Культурология